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Abstract The aim of this work is fast, automated planning of robotic inspections
involving complex 3D structures. A model comprised of discrete geometric primi-
tives is provided as input, and a feasible robot inspection path is produced as output.
Our algorithm is intended for tasks in which 2.5D algorithms, which divide an in-
spection into multiple 2D slices, and segmentation-based approaches, which divide
a structure into simpler components that are solved individually, are unsuitable. This
degree of 3D complexity has been introduced by the application of autonomous in-
water ship hull inspection, in which protruding structures at the stern (propellers,
shafts, and rudders) are positioned in close proximity to one another and to the hull,
and clearance is an issue for a mobile robot. A global, sampling-based approach
is adopted, in which all the structures are simultaneously considered in planning a
path. First, the obstacle-filled state space of the robot is discretized by constructing
a roadmap of feasible states; construction ceases when each primitive is observed
by a specified number of states. Once a roadmap is produced, the set cover problem
and traveling salesman problem are approximated in sequence to build a feasible
inspection tour. We analyze the performance of this procedure in solving one of the
most complex inspection planning tasks to date, covering the stern of a 200-meter
naval ship, using an a priori polygonal mesh model obtained from real sonar data.
Our algorithm generates paths on a par with dual sampling, at about sixty percent
the computational effort.

1 Introduction

A variety of autonomous surveillance, inspection, and distribution tasks can be
solved using coverage path planning. Given an accurate model of the environment,
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a path is designed in which an agent sweeps its geometric footprint over 100% of a
required surface area. Manufacturing operations, security and maintenance inspec-
tions, painting, plowing, cleaning, environmental monitoring and mine-sweeping
are a few of the many applications in which coverage path planning enables faster
task completion compared with greedy or next-best-view strategies [7], [29].

In 2D workspaces with obstacles, cellular decomposition methods divide the free
space into simple, easily-covered pieces [6],[8], allowing a full sweep of the open
area. Alternatively, some applications call for the inspection of structure bound-
aries, and both deterministic (using Voronoi diagrams) [12], [32] and randomized
(sampling-based) approaches [11], [16] have been used.

In 3D workspaces, the inspection task is typically one of boundary coverage. A
structure is represented by a two-dimensional closed surface embedded in K3, and
the sensor must sweep over 100% of the interior or exterior surface area. This prob-
lem is often solved by partitioning a 3D structure and planning individual inspection
paths for separate components. In a 2.5D approach, the workspace is divided into
2D cross-sections, and planned paths over these cross-sections are assembled into
a full 3D inspection [2], [16]. If a complex structure is comprised of distinct 3D
components, one can plan individual inspection paths for each of them, assuming
there is no risk of collision with neighboring components. This approach has been
applied to painting the exterior surfaces of a car [3] and inspecting buildings in an
urban environment [2]. In the former case, a segmentation algorithm automatically
partitioned the car into topologically simple surfaces, and each was covered indi-
vidually using a lawnmower-type trajectory [4]. In the latter case, each building was
treated as an individual planning problem, and neighboring buildings were ignored
(this required sufficient clearance between buildings). The key enabler for these
modular approaches is that the plan for covering any one partition, component, or
cross-section can be developed with no knowledge of the others.

Our coverage application is the autonomous in-water inspection of a ship hull,
a 3D structure with challenging complexity at the stern due to shafts, propellers,
and rudders in close proximity to one another and to the hull. The Bluefin-MIT
Hovering Autonomous Underwater Vehicle [19], pictured in Figure 3, is tasked with
inspecting 100% of the surface area at the stern using a forward-looking bathymetry
sonar. Our vehicle is fully actuated and precision-maneuverable, but it cannot fit
into the spaces between the component structures at the stern. If a 2.5D approach
is adopted for coverage planning, it will need to be augmented with special, out-of-
plane views in this problem to grant visibility of confined areas that are occluded
in-plane. If a 3D modular approach is implemented, paths planned for component
structures are at risk of collision with neighboring structures.

In consideration of these factors, we take a global optimization approach, in
which all 3D protruding structures are considered simultaneously. The constraints
are determined by the geometry of the 3D model provided as input. We use a triangle
mesh, typically comprised of thousands of primitives, to accurately model a ship’s
running gear. Rather than explicitly optimizing robot configurations over the thou-
sands of collision and visibility constraints posed by such geometry, sampling-based
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planning is used to find feasible means for the robot to peer into the low-clearance
areas from a distance [23].

Sampling-based planning was first applied to a coverage problem by Gonzalez-
Baifios and Latombe [16], [17], who used random sampling to construct a solution
to the 2D art gallery problem [30]. This method was recently utilized to achieve
2D view-planning for a laser-equipped wheeled robot [5]. The method was also ex-
tended to path planning in work by Danner and Kavraki, who approximated the
traveling salesman problem (TSP) over the solution to the art gallery problem, plan-
ning inspections for complex 2D structures and for 3D cubes and pyramids [11].

We extend this work in several ways to enable sampling-based coverage path
planning over complex, real-world 3D structures. We construct and analyze com-
putationally a redundant roadmap, in which each geometric primitive is observed
by multiple robot states. To enable fast planning over a large roadmap, tools from
multi-robot [28] and multi-goal [27] planning are utilized to enable lazy collision-
checking. The roadmap construction and collision-checking procedures are dis-
cussed in Section 2.

In Section 3 we discuss the methods by which the set cover problem (SCP) and
TSP are approximated in sequence to build an inspection tour from a redundant
roadmap. We compare two fast SCP approximation algorithms, the greedy algo-
rithm [20], [25] and the linear programming rounding algorithm [18], with the dual
sampling method of Gonzalez-Bafios and Latombe.

In Section 4 we examine algorithm performance over ensembles of Monte Carlo
trials in which randomly-sampled primitives must be inspected by a point robot in
a 3D workspace. For simplicity, this workspace is devoid of obstacles. Finally, in
Section 5 we apply the inspection-planning algorithm to a large-scale, real-world
task, planning the inspection of a ship hull by the HAUV.

2 Sampling-Based Planning Procedure

In developing an inspection path, we employ two sampling-based routines. First,
roadmap construction, which samples robot configurations and catalogs their sensor
observations, creates a discrete state space from which the inspection path will be
made. Second, a point-to-point planner, capable of finding collision-free paths for
multi-degree-of-freedom robots in obstacle-filled workspaces, finds feasible paths
joining the configurations on the roadmap. A stateflow diagram summarizing the
coverage path planning procedure from start to finish is given in Figure 1.

2.1 Roadmap Construction

The roadmap serves as a discrete proxy for the robot’s continuous state space, as
well as a mapping from the state space onto the surfaces and geometric primitives of
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Fig. 1 A stateflow diagram illustrating the coverage path planning procedure from start to finish.
Construction of a roadmap is illustrated in orange, at left, and construction of a feasible path is
illustrated in blue, at right.

the structures being inspected. Rather than compute an inverse kinematic mapping
from the geometric primitives to the robot’s state space, which requires expensive
and repeated computation of a Jacobian pseudoinverse, we rely on forward kine-
matics only. Robot configurations are sampled uniformly at random, and observed
primitives are catalogued. To prevent the roadmap from growing too large in size,
configurations are only added to the roadmap if they fall within the redundancy
criteria.

Our roadmap construction procedure is detailed in Algorithm 1. The parameter
Redundancy is an integer value which indicates the minimum number of sightings
of any geometric primitive that can exist in the completed roadmap. Increased re-
dundancy is intended to create a finely discretized state space from which a smaller
covering subset of robot states will ultimately be chosen. Once a primitive has been
observed a number of times equal to the specified redundancy, a new robot config-
uration cannot be added to the roadmap for a sighting of this primitive alone. All
sensor observations of configurations added to the roadmap are stored and none are
discarded, even if an individual primitive sighting exceeds the required redundancy.

This procedure stands in constrast to that of prior work in sampling-based cov-
erage [11], [16], [17], in which a “dual sampling” approach is preferred over one
that constructs a full-coverage roadmap. In these works, an unobserved geomet-
ric primitive is chosen at random, and a specified number of robot configurations
is sampled from a local neighborhood. The configuration that collects the largest
quantity of new sensor information is selected as a waypoint for the inspection tour.
This method does not require the solution of the SCP over the roadmap, but it does
require the computation of a state space region from which a specific geometric
primitive is visible (which may be expensive in non-Euclidean state spaces). We
will compare our approach to instances of the dual sampling method in which a
solution can be obtained in equivalent computation time.

2.2 Lagzy Point-to-Point Planning
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Algorithm 1 ConfigList = BuildRoadmap(Primitives, Obstacles, Redundancy)

1: IncompletePrimitives <— Primitives

2: while IncompletePrimitives # @ do

3 NewConfig + FeasibleSample(Obstacles)

4:  NewSightings < Sensor(NewConfig, Primitives, Obstacles)
5:  NeededSightings <— NewSightings N IncompletePrimitives
6:  if NeededSightings # () then

7 ConfigList.add(NewC fg,NewSightings)

8 for i € NeededSightings do

9: NeededSightings|i].incrementNumSightings()
10: if NeededSightings|i].numSightings = Redundancy then
11: IncompletePrimitives < IncompletePrimitives \ NeededSightingsi]
12: end if
13: end for
14:  endif

15: end while
16: return ConfigList

Algorithm 2 RobotTour = LazyTourAlgorithm(Nodes, Obstacles)

1: AdjMat < EuclideanDistances(Nodes)

2: UnclearedEdges + GetEdgePairs(Nodes)
3: ClearedEdges < 0

4: while NewTourCost # PreviousTourCost do

5:  PreviousTourCost <— NewTourCost

6:  NewTourCost <0

7:  LazyTour < ComputeTour(Ad jMat)

8:  for Edge;; € LazyTour do

9: if Edge;; € UnclearedEdges then
10: FeasiblePath;;j < RRT (Edge;;, Obstacles)
11: ClearedEdges < ClearedEdges U Edge;;
12: UnclearedEdges < UnclearedEdges\ Edge;;
13: AdjMat (i, j) < PathCost(FeasiblePath;;)
14: end if
15: NewTourCost <— NewTourCost +Ad jMat (i, j)
16:  end for

17: end while
18: RobotTour < LazyTour
19: return RobotTour

Efficient computation along roadmap edges is achieved with a lazy algorithm. As
the roadmap is constructed, an adjacency matrix is maintained in which all entries
represent the Euclidean norms among roadmap nodes. Computation of a Euclidean
norm is far simpler than collision-checking and observation-checking along every
edge of the roadmap. An initial inspection tour is computed over this naive ad-
jacency matrix, and only the edges selected in the tour are collision-checked, not
every edge of the roadmap. The bi-directional rapidly-exploring random tree (RRT)
is utilized as the point-to-point planner [22]. Presumably, the computation of RRTs
over the edges of the inspection tour increases the lengths of some edges. To ad-
dress this, an iterative improvement procedure, similar to that of [27], is utilized.
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After the first set of feasible paths is obtained, the costs in the adjacency matrix are
updated, and the inspection tour is recomputed using the new costs. This procedure
is repeated, and goal-to-goal costs are iteratively updated, until there is no further
improvement in the length of the returned path. Instead of requiring O(n?) calls to
the RRT, this approach requires O(C *n) calls, where C is the number of iterations
in which a new tour is computed. This procedure is detailed in Algorithm 2.

3 Constructing an Inspection Tour

An efficient implementation of the RRT subroutine is only useful if computations
over the the adjacency matrix are fast and efficient. However, the exact problem
we aim to solve, finding the shortest path that collects an element from every set
(where the sets are observations of primitives obtained at each roadmap node) is an
instance of the generalized traveling salesman problem (GTSP), which is NP-hard
and has no constant-factor approximation. Although branch-and-cut algorithms [14]
and reduction to a non-metric asymmetric TSP [24], [26] have been characterized,
these are not suitable for an iterative, real-time procedure (neither is solved by an
approximation algorithm with a guaranteed termination time). As of this writing, a
constant-factor approximation can only be obtained if each roadmap node is lim-
ited to exactly two primitive sightings, in which case the problem reduces to a Tour
Cover [1]. We have found that stripping sensor information out of the roadmap to
achieve an equivalent Tour Cover undoes any benefit of a constant-factor approxi-
mation.

Our approach is similar to that suggested by Current and Schilling [10], in which
a GTSP (referred to in their work as the Covering Salesman Problem, a special
geometric case of the GTSP [15]) is solved by posing, in sequence, a SCP subprob-
lem and a Euclidean TSP subproblem. Both the SCP and Euclidean TSP can be
approximated to within a constant factor of optimality using fast, polynomial-time
algorithms. Recent work on penalizing both viewing and traveling costs [31] ad-
dresses the possibility of an arbitrarily bad result if a global optimization is broken
into separate SCP and TSP subproblems. Although this would be possible for a sen-
sor model with infinite range, the inspection problems for which our algorithms are
intended involve robots with decidedly finite sensing radii. Specifically, our appli-
cation of interest employs a bathymetry sonar with a 4-meter sensing radius. The
workspace is much larger than this, and thus we believe there is a strong correlation
between the minimum-cardinality set cover and the minimum-cost GTSP.

3.1 Set Cover Subproblem

To solve the set cover subproblem, we rely on polynomial-time approximation al-
gorithms that find solutions within guaranteed factors of optimality. We consider
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two such algorithms, a greedy algorithm and a linear programming (LP) rounding
algorithm. The greedy algorithm [20], [25] simply adds to the set cover, on each
iteration, the roadmap node with the largest number of observed primitives not yet
in the cover. This algorithm solves the SCP within a factor of optimality that is
bounded above by In(m) + 1, where m is the number of primitives required in the
inspection. The rounding algorithm [18] solves the LP relaxation of the SCP, and
then rounds the fractional solution according to a simple rule: if f is the largest
number of roadmap nodes which share sightings of a primitive, then any roadmap
node whose fractional decision variable is greater than or equal to 1/f is included
in the cover. This method is guaranteed to return a solution within a factor f of
optimality.

In the ship hull inspection example to be presented below, there are more than
103 primitives required in the inspection, giving a greedy algorithm approximation
factor of about 12.5. At the same time, a typical value of f on a representative
roadmap for this task is about twenty. Since these are both fast algorithms, and the
approximation factors are of the same order, we will compare the two to assess their
performance in practice.

3.2 Traveling Salesman Subproblem

To solve the TSP subproblem, we rely on another polynomial-time approximation.
The algorithm of Christofides [9] computes the minimum spanning tree (MST) over
a graph, and then a minimum-cost perfect matching over the odd-degree nodes of
the MST, achieving an approximation factor of 1.5 when the triangle inequality
holds over the roadmap. Although our lazy computation procedure may occasionally
violate the triangle inequality, our use of RRT post-optimization and smoothing
ensures that there are no paths from a roadmap node i to a roadmap node k such than
an alternate path from i to some node j to k is dramatically shorter. This assumption
has proven successful in MST-only variants (with factor-2) for single and multi-
agent coverage planning [11], [13], as well as pure multi-goal planning [27].

4 Point Robot Test Case

First, we evaluate the performance of our inspection planning procedure on a point
robot test case. This problem addresses algorithm performance as a function of the
number of primitives, independent of collision and occlusion-checking. The unit
cube is populated with a designated number of randomly sampled points, and the
robot must plan a tour which observes them. Mimicking the HAUV inspection prob-
lem, the point robot has a four-dimensional state, comprised of three spatial coor-
dinates, x, y, and z, and a yaw angle, 0. The robot’s sensor footprint is also a cube,
centered at the robot’s location and designed to occupy one percent of the workspace
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Fig. 2 Inspection planning results from a point in an obstacle-free, unit-cube workspace, in which
the cube sensor is 1% of the workspace volume. Inspection tour cost and roadmap size are plotted
as a function of the number of required primitives; each data point represents the mean over 100
simulations. On left, LP rounding lines represent increasing redundancy from one to five, upward
on the vertical axis. Greedy rule lines have increasing redundancy moving downward. Dual sam-
pling lines have increasing numbers of local samples, [5,10,25,50,100], also moving downward.
Roadmaps on right plot refer to LP rounding and greedy rule computations.

volume, which is again representative of the parameters of a typical HAUV inspec-
tion planning problem. There are no obstacles in the point robot’s workspace.

For each of several numbers of required primitives, ranging from 10 to 10,
100 instances of the planning procedure were run and the resulting tour cost and
roadmap size were recorded. For each of these instances, five different redundancy
requirements were explored, ranging from a roadmap in which each primitive must
be observed at least once to a roadmap in which each primitive must be observed
at least five times. As random robot configurations were sampled, an attempt was
made to introduce each configuration into all five roadmaps, so the roadmaps of
the same problem instance could share as many robot configurations as possible.
Additionally, each of these five roadmaps was solved using both SCP approximation
algorithms, the LP rounding algorithm and the greedy algorithm.

The same quantity of trials was run for a dual sampling implementation. A ran-
dom primitive was sampled in each iteration, and robot configurations capable of
viewing this primitive were sampled a designated number of times, which we re-
fer to as the number of local samples. Of these, the configuration contributing the
greatest quanitity of new observations was added as a waypoint in the inspection
tour.

Figure 2 displays the results of this series of point-robot simulations. Increasing
the redundancy of the coverage roadmap improved the quality of the greedy SCP
solution, but worsened the quality of the LP rounding solution, which only works
reasonably for a redundancy of one. Increasing the number of local samples in a dual
sampling scheme improved the quality of the dual sampling solution, which was
comparable with the results for redundant roadmaps solved by the greedy set cover
algorithm. As further basis for comparison, the length of the optimal “lawnmower”
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path for the point-robot’s cube sensor to achieve 100% coverage of the continous
workspace is plotted alongside the tour costs in Figure 2. For a low number of
primitives, the sensor does not have to cover the entire volume. It is also clear from
Figure 2 that an increase in roadmap redundancy has a significant impact on the size
of the roadmap.

If the greedy SCP algorithm is used, improvements of approximately 10% are
made by increasing the redunancy of the roadmap from at least one sighting per
primitive at least five sightings per primitive. The added computational resources
required to build a larger and more comprehsive roadmap would be acceptable in
applications where such an improvement in robot mission time amounts to a large
cost savings. A similar trend is observed if the number of local samples in the dual
sampling scheme is increased from 10 to 100. Both of these strategies, dual sampling
and using a redundant roadmap with the greedy SCP algorithm, however, encounter
a similar asymptotic performance barrier as the discretization is set finer and finer.
Despite the neighborhood optimization of the dual method, and the global scope of
the redundant roadmap, a bias persists due to the greedy basis for both methods, in
which robot configurations are added to the inspection one by one.

5 AUV Inspection Test Case

The inspection planning procedure is next applied to a real-world problem, the in-
spection of the stern of a ship by the HAUV. The inspection is planned for the
SS Curtiss, a 200-meter aviation logistics support ship. The complex structures are
large, with a single propeller seven meters in diameter and a shaft that is 1.5 me-
ters in diameter. We first surveyed the area with vertical and horizontal lawnmower
patterns at safe distances of around eight meters. This preliminay survey, although
it did not achieve 100% coverage of all structures, was intended to build a polygo-
nal mesh model of the stern suitable for planning a detailed inspection — employing
the algorithms of this paper. For this, the Poisson reconstruction algorithm [21],
which is typically applied to laser point clouds, was used to build a watertight 3D
mesh from acoustic range data, pictured in Figure 4. This polygonal mesh possesses
107,712 points and 214,419 triangular faces, and has been discretized such that no
triangle edge is larger than 0.1 meters, sufficient to identify a mine on the surface of
the hull if all vertices are observed. Also in Figure 4, the sensor footprint represents
the sonar field of view when the sonar is nodded up and down through its full 180-
degree range of rotation. Although the sonar can only produce a single range scan at
a time, we assume that in this planned inspection, the vehicle, at each configuration,
will nod the sonar over its full range of angular motion to obtain a larger field of
view. Paths for the vehicle will be planned, as before, in x, y, z, and yaw angle 6.
Because of the increased size and complexity of this inspection task, coverage
roadmaps were not built to the same redundacy as in the point robot test case. Only
three redundancies were tested: one, two, and three. For each redundancy, coverage
roadmaps were constructed in 100 separate trials, and once again, each sampled
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Fig. 3 An HAUV survey in progress at the SS Curtiss, a 200-meter aviation logistics support ship.
At bottom right, an annotated diagram of the HAUV, model 1B.

configuration was introduced into as many of the roadmaps of varying redundancy
as possible. Both the LP rounding SCP algorithm and the greedy SCP algorithm
were again tested on these roadmaps. Because the ship mesh itself comprises a large,
non-convex obstacle, the inspection planning procedure was used in its entirety,
including the bi-directional RRT to perform lazy inquiries of point-to-point paths.

As is displayed in Figure 5, roadmap redundancy led to an improvement in tour
length when the greedy SCP algorithm was used. Requiring each primitive to be
observed twice shortened the average tour length by 25 meters, and reduced the
worst-case tour length by nearly 50 meters. Requiring that each configuration must
be observed three times yielded diminishing returns, as the mean tour length wors-
ened. LP rounding in this problem was not competitive for any redundancy setting.
As the right portion of Figure 5 indicates, an increase in redundancy causes a signif-
icant increase in the size of the roadmap. Despite this increase in roadmap size, all
combinatorial approximation algorithms are solved very fast in this problem, whose
runtime is largely dominated by the sampling phase.

To obtain a clearer picture of the impact of increased redundancy, Figure 6 dis-
plays histograms showing the coverage topology. It is clear that increased redun-
dancy both increases the size of the roadmap and increases the mean and variance
of the number of times a primitive is sighted.

In applying dual sampling to this planning problem, only two quantities of lo-
cal samples were tested, five and ten. Beyond a value of ten, computation time grew
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Fig. 4 A polygonal mesh obtained from our original, safe-distance survey of the SS Curtiss is
depicted. The HAUYV is illustrated at a configuration from which it observes a portion of the ship’s
rudder, at inspection range of about three meters. The primitives observed by the HAUV at this
configuration are plotted in red; it is assumed that the HAUV has nodded the sonar. The ship mesh
contains 107,712 points and 214,419 triangular faces. The propeller is approximately 7 meters in
diameter.
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Fig. 5 Results of a series of inspection planning computations for the HAUV are depicted. Three
different roadmap redundancies are examined, and the data for each redundancy represents the
mean, the min, and the max (indicated by the error bars) over 100 trials. Inspection tour length is
depicted at left, and roadmap size is depicted at right.

prohibitively high. For each quantity of local samples, 100 separate trials of the dual
sampling algorithm were run. Table 1 displays the costs of the best-performing algo-
rithms, and Table 2 displays the average computation times and ray shooting calls
of selected algorithms. The dual sampling algorithms, in general, required more
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Fig. 6 Histograms display the coverage topology of a typical set of roadmaps for an instance of
the ship hull inspection task. The quantities of targets observed by roadmap configurations are
illustrated at left, and the quantities of shared sightings of geometric primitives are illustrated at
right.

Table 1 Selected Tour Costs over 100 HAUV Inspection Planning Trials

Mean Cost [m]{Min. Cost [m][Max. Cost [m]

Dual Sampling with 5 Local Samples 3432 317.7 369.0

Dual Sampling with 10 Local Samples 315.2 289.3 333.4
Roadmap with Redundancy = 1, Greedy Alg. 3425 311.4 374.7
Roadmap with Redundancy = 2, Greedy Alg. 312.7 285.8 331.4
Roadmap with Redundancy = 3, Greedy Alg. 321.1 293.1 345.7

Table 2 Avg. Computation Time and Avg. Number of Ray Shooting Calls Required for HAUV
Inspection Planning by Dual Sampling Algorithm (number of local samples indicated by L.S.) and
Redundant Roadmap Algorithm with Greedy Set Cover (redundancy indicated by R)

LS. =5[LS. =10] R=1] R=2[ R=3
Path Solution Time [sec] 112 189 79 111 126
Number of Ray Shooting Calls|6.1 x 10°|1.0 x 107 |4.8 x 10°|6.0 x 10°|6.9 x 10°

computation time to achieve a result comparable in cost to that of a faster solution
computed using a redundant roadmap and the greedy set cover algorithm. In partic-
ular, for equal-cost paths, dual sampling is between forty and seventy percent more
expensive than are redundant roadmaps.

For all algorithms tested here, the vast majority of computational resources were
spent dealing with the complex geometry of this planning problem, realized in the
selection and checking of robot configurations. Ray shooting to compile sensor ob-
servations and check for occlusions at each of the sampled robot configurations was
the single most time-consuming task in the planning procedure. Every algorithm
made several million ray shooting calls to solve the HAUV planning problem, but
the dual sampling scheme, to match the tour length of a redundancy-two roadmap,
required four million more calls than the roadmap method. This data is evidence
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that the selectivity of the dual sampling method becomes a burden for 3D problems
in which every sampled configuration must be checked against a large number of
geometric primitives.

Table 3 Resources Used for Coverage Path Planning Software Implementation

Software Use Link

OpenSceneGraph kd-tree data structure for|http://www.openscenegraph.org
triangle mesh, ray shooting

FLANN kd-tree data structure for|http://www.cs.ubc.ca/
nearest-neighbor queries |~mariusm/index.php/FLANN/FLANN

OMPL RRT Implementation http://ompl.kavrakilab.org/index.html

PQP Collision Checking http://gamma.cs.unc.edu/SSV

Boost Graph Library |[Minimum Spanning Tree |http://www.boost.org/doc/libs/1-46_1/

libs/graph/doc/index.html

Blossom IV Min-Cost Perfect Match- |http://www?2.isye.gatech.edu/

ing ~wcook/blossom4

To ensure these results were obtained using the very best data structures and
computational geometry tools available, a variety of high-performance open-source
software tools were utilized. A list of these software tools is availabe in Table 3,
which also includes software for the combinatorial optimization problems in this
work.

Representative HAUV inspection paths are depicted in Figure 7. An interest-
ing (and generally observed) result is the dual algorithm’s selection of many robot
configurations that are relatively close to the ship structure, and the greedy SCP al-
gorithm’s selection of robot configurations which are further from the structure by
comparison. This goes hand in hand with the observed trend that redundant roadmap
tours achieved comparable length to dual sampling tours, but with a smaller number
of configurations in the tour on average. This likely results from the bias of sampling
the boundary of the structure in the dual method versus sampling a larger workspace
in the primal method, which extended beyond the visibility range of the HAUV.

6 Conclusion

In this work we presented an algorithm which plans fast, feasible inspection paths
giving 100% sensor coverage of required geometric primitives. Key developments
are the use of redundancy in a roadmap for coverage path planning, and the imple-
mentation of an integrated solution procedure for sampling-based coverage planning
over complex 3D structures with many thousands of primitives (using highly devel-
oped, open-source routines wherever possible).

First, a state space discretization is chosen. The level of “resolution” of this dis-
cretization is determined by the redundancy of the roadmap. Second, a set of states
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Fig. 7 Two representative examples of planned HAUYV inspection paths, with views from beneath
the ship and from the side. The upper half of the figure represents a roadmap solved using the
greedy SCP algorithm, in which each primitive was observed at least twice by the configurations
in the roadmap. The tour depicted is 310 meters in length, and contains 208 distinct configurations.
The lower half of the figure represents a dual sampling solution, in which configurations were
sampled in the vicinity of specific geometric primitives (ten local samples per primitive). The tour
depicted is also 310 meters in length, but is comprised of 242 distinct configurations.

is chosen. A set cover approximation algorithm is applied to the roadmap, and the
group of states to be used in the inspection is selected. Third, a sequence of states is
chosen, using a polynomial-time approximation for the traveling salesman problem.
And throughout this procedure, point-to-point sampling-based planning is used (in
a “lazy” format for the sake of computational tractability) to ensure that the selected
states and paths are feasible.

We have identified that this redundant roadmap method, in comparison to a dual
sampling procedure, yields a computational advantage in a large-scale, real-world
coverage problem. Less time is spent checking and cataloging sensor observations,
and a comparable if not superior planned path is produced as a result.
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