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Abstract This paper addresses the problem of deploying a network of robots into
an environment, where the environment is hazardous to the robots. This may mean
that there are adversarial agents in the environment trying to disable the robots, or
that some regions of the environment tend to make the robots fail, for example due
to radiation, fire, adverse weather, or caustic chemicals. A probabilistic model of
the environment is formulated, under which recursive Bayesian filters are used to
estimate the environment events and hazards online. The robots must control their
positions both to avoid sensor failures and to provide useful sensor information by
following the analytical gradient of mutual information computed using these on-
line estimates. Mutual information is shown to combine the competing incentives of
avoiding failure and collecting informative measurements under a common objec-
tive. Simulations demonstrate the performance of the algorithm.
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1 Introduction

Networks of robotic sensors have the potential to safely collect data over large-
scale, unknown environments. They can be especially useful in situations where
the environment is unsafe for humans to explore. In many such situations, robots
are also susceptible to hazards. It is important to design exploration and mapping
algorithms that are hazard-aware, so that the robotic sensor network can effectively
carry out its task while minimizing the impact of individual robot failures. In this
paper we propose an algorithm, based on an analytic expression for the gradient
of mutual information, that enables a robotic sensor network to estimate a map of
events in the environment while avoiding failures due to unknown hazards.

(a) Event map (b) Hazard map

Fig. 1 The tragic accident at the Fukushima nuclear power plant in Japan is a fitting scenario
for our algorithm. Hypothetical maps of the events and hazards are shown over an image of the
Fukushima plant from http://maps.google.com/. On the left, the events of interest are
structural defects represented by the explosion symbols, and the contour lines represent the prob-
ability of detecting these defects. Sensors move to determine where the structural defects are by
increasing the informativeness of their sensor readings. Black circles represent sensors that see a
defect while white circles do not see a defect. On the right, the hazards are radiation sources rep-
resented by the

⊗⊗⊗
symbol, and the contours represent the probability of failure due to radiation

damage. By moving to increase informativeness, the robots implicitly avoid hazards that may cause
failure thereby preventing information from being collected. The grayed-out robot in the center has
failed due to the high radiation levels.

Consider, for example, the recent tragic accident at the Fukushima nuclear power
plant in Japan, which sustained critical damage from a large earthquake and tsunami
in March, 2011. The algorithm we propose here could be used by a team of flying
quadrotor robots with cameras to inspect the plant for structural damage, keeping
human workers at a safe distance. With our algorithm the robots could build a map
of the areas that are likely to have structural damage, while simultaneously building
a map of the radiation hazards, to avoid failure due to radiation exposure. This sce-
nario is illustrated in Fig. 1. Both the event map and the hazard map are estimated
online using a recursive Bayesian filter, where the event map is estimated from ev-
idence of structural damage seen by the cameras, and the hazard map is estimated
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by the previous failures of other robots. The robots move along the gradient of mu-
tual information, which gives the direction of expected maximum information gain
given the current maps, thereby driving the exploration of the environment. Our al-
gorithm could also be used, for example, to monitor forest fires while avoiding fire
damage, taking ocean measurements while avoiding damage from adverse weather,
or mapping a chemical spill site while avoiding failure from caustic chemicals.

In all of these examples, the robots must move to both avoid hazards and provide
useful sensor information. Although these two objectives may seem to be in conflict
with one another, they are in fact complementary. If we want to map the events as
precisely as possible, we implicitly want the robots to avoid hazardous areas, since
the failure of a robot makes it unable to contribute to estimating the event map in the
future. We use the gradient of mutual information to move the sensors so that their
next measurements are as informative as possible. The gradient strategy blends the
avoidance of hazards and the seeking of information into one probabilistically con-
sistent objective. We propose a probabilistic model of the environment, the sensors,
and the task, and derive the Bayesian filters for updating the event and hazard maps.
We then prove a general theorem showing that the analytical gradient of mutual in-
formation has a simple form similar to mutual information itself. To our knowledge,
this is the first proof of such an expression to appear in the literature. The mutual
information gradient is then used to control the robots. We do not consider decen-
tralization of the algorithm in this paper, though that will be a central concern of
future work, and several existing methods can be adapted for decentralization.

1.1 Related Work

Mutual information is one of the fundamental quantities in information theory
[Shannon, 1948, Cover and Thomas, 2006] and has been used extensively as a
metric for robotic sensor network control and static sensor placement. For ex-
ample, in [Grocholsky, 2002] and [Bourgault et al., 2002] mutual information is
used as a metric for driving robotic sensor networks in gridded environments
for target tracking and exploration tasks. Also, [Hoffmann and Tomlin, 2010] fo-
cused on decentralization and scalability using particle filters to approximate mu-
tual information for target tracking. Recently in [Julian et al., 2011] the gradient
of mutual information was used to drive a network of robots for general en-
vironment state estimation tasks, and a sampling method was employed to im-
prove computational efficiency. The property of submodularity of mutual infor-
mation was used in [Krause et al., 2006, Krause and Guestrin, 2007] for placing
static sensors at provably near-optimal positions for information gain. The tech-
nique was extended to Gaussian processes in [Krause et al., 2008]. Approximations
on information gain for static sensor placement were derived in [Choi et al., 2008,
Choi and How, 2011b] and an informative trajectory planning algorithm was pre-
sented in [Choi and How, 2011a]. In a different but related application,
[Vitus and Tomlin, 2010] uses mutual information to place static sensors to provide
localization information to a mobile robot.
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Our method differs in at least two important ways from those described above.
Firstly, our work is specifically concerned with estimating and avoiding environ-
mental hazards as well as estimating events. To our knowledge no works combining
these objectives using mutual information have appeared in the literature. Secondly,
we use an analytically derived expression for the gradient of mutual information for
control. All the works above, save one, use grid-based finite difference methods to
increase mutual information. The exception is [Julian et al., 2011], which employs
the same analytical gradient of mutual information, but we have reserved the presen-
tation of the proof of that result for this paper. A similar gradient result was derived
in the context of channel coding in [Palomar and Verdú, 2007].

Many other methods that do not use mutual information have been proposed for
mapping and exploring environments with robotic sensor networks. For example
[Lynch et al., 2008] uses the error variance of a distributed Kalman filter to drive
robots to estimate environmental fields. In [Schwager et al., 2009] a Voronoi based
coverage algorithm from [Cortés et al., 2004] is augmented with online learning and
exploration to estimate a scalar field in the environment. Similarly, [Martı́nez, 2010]
expanded this coverage algorithm with online interpolation of an environmental
field. Artificial potential fields have been used in [Howard et al., 2002] for multi-
robot deployment and exploration, and[Li and Cassandras, 2005] uses a probabilis-
tic coverage model for multi-robot deployment.

The question we address in this paper is: How do we choose the next positions
x1, . . . ,xn to make the next Bayesian estimate of the event state as precise as possi-
ble? As already described, implicit in this question is the tendency to avoid hazards
because a failed robot is an uninformative robot. However, in our scenario, as in
real life, all the robots will eventually fail. To counteract the depletion of robots,
we let there be a base station located in the environment that deploys new robots to
replace ones that have failed. We let the rate of releasing new robots balance the rate
of failed ones, so that the total number of robots is constant at all times. However
many other interesting possibilities exist.

The rest of this paper is organized as follows. We define notation and formulate
the problem in Section 2. We derive the Bayesian filters to estimate the hazards and
events in Section 3. In Section 4 we derive the analytical gradient of mutual informa-
tion and specialize it for our hazard-aware exploration problem. Finally, Section 5
presents the results of numerical simulations and conclusions and future work are
discussed in Section 6.

2 Problem Formulation

Consider a situation in which n robots move in a planar environment Q ⊂ R2. The
robots have positions xi(t) ∈ Q and we want to use them to sense the state of the
environment while avoiding hazardous areas that may cause the robots to fail. Let
the positions of all the robots be given by the vector x = [xT

1 · · · xT
n ]T . The robots

give simple binary sensor measurements yi ∈ {0,1} indicating wether or not they
have sensed an event of interest near by. They also give a signal to indicate their
failure status fi ∈ {0,1}, where fi = 1 means that the robot has failed. Denote the
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random vector of all sensor outputs by y = [y1 · · · yn]T and the vector of all failure
statuses as f = [ f1 · · · fn]T .

Table 1 List of symbols.

xi Position of sensor i x Stacked vector of sensor positions
yt

i Reading of sensor i at time t y1:t Time history of measurements up to t
f t
i Failure status of sensor i at time t f 1:t Time history of failures up to t

q j Centroid position of grid cell j Q Environment
s j Event state in grid cell j s Full event state of environment
h j Hazard state in grid cell j h Full hazard state of environment

The task of the robot network is to estimate the state of the environment with
as little uncertainty as possible. While the robots move in continuous space, we
introduce a discretization of the environment to represent the environment state. We
let the state of the environment be modeled by a random field s = [s1 · · · sms ]

T , in
which each random variable s j represents the value of the field at a position q j ∈ Q
and ms is the number of discrete locations. Each of these random variables takes
on a value in a set s j ∈ S, and the environment state has a value s ∈ S = Sms .
Similarly, the hazard level, which is related to the probability of failure of the robot,
is modeled as a random field h = [hT

1 · · · hT
mh

] in which hk represents the hazard
level at position qk ∈ Q, and takes on a value in a set H. Then the hazard state of
the whole environment has a value h ∈ H = Hmh . In general, S and H may be
infinite sets, however one special case of interest is S = {0,1}, and H = {0, 1}, so
the state and hazard distributions denote the presence or absence of a target or a
hazard, respectively, in a grid cell. Note that the use of the phrase grid cell refers to
an element in the discretization of the environment, which need not be a square grid.
We will work with the more general framework to include the possibility that some
areas may be more important than others, or that there may be multiple events or
hazards in a single grid cell. Also note that the discretization of the environment for
state and hazard estimation need not be the same, for example we might need more
precise localization of events than hazards. Let φ 0(s) and ψ0(h) denote the robots’
initial guess at the distribution of the state and the hazards, respectively, which can
be uniform if we have no prior information about the events or hazards.

Furthermore, in our scenario the robots have some probability of failure due to
the hazards in the environment. Let the probability of failure of a robot at xi due to
hazard level h j at location q j be given by P( fi = 1 | h j = 1) = α(xi,q j). We also
assume that the hazards act independently of one another and that the probability of
failure when infinitely far away from a hazard is given by Pf,far, so that

P( fi = 0 | h) = (1−Pf,far) ∏
j|h j=1

P( fi = 0 | h j) = (1−Pf,far) ∏
j|h j=1

(
1−α(xi,q j)

)
. (1)

In words, the probability of a robot not failing is the product of the probability of it
not failing due to any individual hazard. This gives the probability of a robot failing
due to any number of hazards in the environment as
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P( fi = 1 | h) = 1− (1−Pf,far) ∏
j|h j=1

(
1−α(xi,q j)

)
. (2)

When a robot fails, its sensor will output 0 with probability 1, that is, its sensor
reading gives no indication of whether or not there is an event of interest near by,
giving the conditional probability P(yi = 1 | fi = 1,s) = 0. In this case, the sensor
will naturally provide no further information about event or hazard locations.

If the robot does not fail, the sensor output, yi, is a Bernoulli random variable
with the probability of yi = 1 due to a state value s j at position q j given by P(yi =
1 | fi = 0,s j) = µ(xi,q j), and the probability that yi = 0 the complement of this. We
again assume that state locations act independently on the robot’s sensor and that
the probability of a false positive reading is Pfp so that

P(yi = 0 | fi = 0,s) = (1−Pfp) ∏
j|s j=1

(
1−µ(xi,q j)

)
. (3)

Then the probability that a robot’s sensor gives yi = 1 for a given environment state
is the complement of this,

P(yi = 1 | fi = 0,s) = 1− (1−Pfp) ∏
j|s j=1

(
1−µ(xi,q j)

)
. (4)

We defer the discussion of specific forms of the functions α and µ to Section 5,
however potential choices for the case where a hazard or event is present would be
a decreasing exponential, a Gaussian function, or, in the simplest case, a constant
(e.g. close to 1) inside some distance to q j and some other constant (e.g. close to
zero) outside. We will see that when µ or α have compact support in Q, there are
computational benefits.

Now we consider the group of robots together. We derive three quantities that
will be used in the Bayesian filters and control law; the likelihood function of the
sensor measurements given the failures, the events, and the hazards, P(y | f ,s,h);
the likelihood function of the failures given the events and the hazards, P( f | s,h);
and the likelihood function of the sensor measurements given the events and the
hazards, P(y | s,h).

For P(y | f ,s,h), assume that each robot’s measurement is conditionally indepen-
dent of the hazards and the other robots’ measurements given its own failure status
and the environment state, P(y | f ,s,h) = ∏

n
i=1 P(yi | fi,s). Supposing we know the

failure status of each robot, we can compute the measurement likelihood to be

P(y | f ,s,h) = ∏
i| fi=0

P(yi | fi = 0,s) ∏
j| f j=1

P(y j | f j = 1,s),

but

∏
j| f j=1

P(y j | f j = 1,s) = ∏
j|y j=0, f j=1

P(y j | f j = 1,s) ∏
j|y j=1, f j=1

P(y j | f j = 1,s),
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and the set { j | y = 1, f j = 1}= /0 and P(y j = 0 | f j = 1,s) = 1, therefore this product
reduces to 1. Then we have

P(y | f ,s,h) = ∏
i|yi=0, fi=0

P(yi = 0 | fi = 0,s) ∏
j|y j=1, f j=0

P(y j = 1 | f j = 0,s)×1

= ∏
i|yi=0, fi=0

( ms

∏
k=1

(
1−µ(xi,qk)

))
∏

j|y j=1, f j=0

(
1−

ms

∏
l=1

(
1−µ(x j,ql)

))
(5)

where we use (4) and (3) to get the last equality.
Next we derive the failure likelihood, P( f | s,h). Conditioned on knowledge of

the hazards, the failures are independent of the events and each other, so P( f | s,h) =
∏

n
i=1 P( fi | h). Then using (1) and (2) we obtain

P( f | s,h) = ∏
i| fi=0

mh

∏
k=1

(
1−α(xi,qk)

)
∏

j| f j=1

(
1−

mh

∏
l=1

(
1−α(x j,ql)

))
. (6)

Finally, in the case that we want to predict an information gain for a future mea-
surement, the failures are not yet known, so we will need the quantity P(y | s,h).
This leads to

P(y | s,h) = ∑
f∈{0,1}n

P(y | f ,s,h)P( f | s,h) = ∑
f∈{0,1}n

n

∏
i=1

P(yi | fi,s)P( fi | h)

=
n

∏
i=1

∑
fi∈{0,1}

P(yi | fi,s)P( fi | h), (7)

where, as we already saw, P( fi = 0 | h) = ∏
mh
j=1(1−α(xi,q j)) and P( fi = 1 | h) =

1−P( fi = 0 | h), and similarly P(yi = 0 | fi = 0,s) = ∏
ms
j=1(1−µ(xi,q j)) and P(yi =

1 | fi = 0,s) = 1−P(yi = 0 | fi,s), and finally P(yi = 0 | fi = 1,s) = 1 and P(yi =
1 | fi = 1,s) = 0. Next we use these quantities to derive a recursive Bayesian filters
for maintaining a distribution over all possible event and hazard states.

3 Bayesian Estimation

As our robots move about in the environment, we wish to make use of their measure-
ments and failure statuses at each time step in order to recursively estimate the events
and hazards in the environment. We will show in this section, surprisingly, that the
event and hazard estimates are either statistically independent, or they are determin-
istically linked (knowledge of either one fully determines the other). An unexpected
consequence of the natural formulation in Section 2 is that there can be no statisti-
cal dependence between the event and hazard estimates except these two extremes.
We let the robots collect measurements yt synchronously at times t = 1,2, . . ., and
we denote the tuple of all measurements up to time t by y1:t := (y1, . . . ,yt). We use
a similar notation for failures, so that f 1:t := ( f 1, . . . , f t) is the tuple of all fail-
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ure statuses up to time t. Furthermore, define the event distribution estimate up to
time t to be φ t(s) := P(s | y1:t , f 1:t) and the hazard distribution up to time t to be
ψ t(h) := P(h | y1:t , f 1:t). The main result of this section is stated in the following
theorem.

Theorem 1 (Bayesian Filtering). The distributions for hazards and events given
all information up to time t are independent with P(s,h | y1:t , f 1:t) = φ t(s)ψ t(h),
assuming that h and s are not deterministically linked, and that their initial distri-
butions are independent, P(s,h) = φ 0(s)ψ0(h). Furthermore, φ t(s) and ψ t(h) can
be computed recursively with the Bayesian filters

φ
t(s) =

P(yt | f t ,s)φ t−1(s)
∑s∈S P(yt | f t ,s)φ t−1(s)

, (8)

and

ψ
t(h) =

P( f t | h)ψ t−1(h)
∑h∈H P( f t | h)ψ t−1(h)

. (9)

In the case that the events and the hazards are deterministically linked, the Bayesian
filter update for the distribution is given by

P(s | y1:t , f 1:t) =
P(yt | f t ,s)P( f t | s)P(s | y1:t−1, f 1:t−1)

∑s∈S P(yt | f t ,s)P( f t | s)P(s | y1:t−1, f 1:t−1)
. (10)

Proof. We will argue the existence of these two distinct cases by mathematical in-
duction. We first prove (9) and then use it to prove (8). We will then derive (10)
directly from the assumption that s and h are deterministically related.

To obtain an inductive argument, suppose that at t − 1 the hazard estimate
ψ t−1(h) = P(h | y1:t−1, f 1:t−1) = P(h | f 1:t−1) is independent of the sensor mea-
surements y1:t−1. Then the recursive Bayesian filter update for time t gives

ψ
t(h) =

P(yt , f t | h)ψ t−1(h)
∑h∈H P(yt , f t | h)ψ t−1(h)

.

Now assuming that h and s are not deterministically related, we get P(yt , f t | h) =
P(yt | f t ,h)P( f t | h) = P(yt | f t)P( f t | h), where the last equality is because given
the failure, f t , the measurement, yt , is independent of the hazards, h, as described in
the previous section. This leads to

ψ
t(h) =

P(yt | f t)P( f t | h)ψ t−1(h)
P(yt | f t)∑h∈H P( f t | h)ψ t−1(h)

,

and we can cancel the factor of P(yt | f t) from the numerator and denominator to ob-
tain (9). Now notice that ψ t(h) = P(h | y1:t , f 1:t) = P(h | f 1:t) remains independent
of the measurements at time t. The initial distribution, ψ0(h), must be independent
of y1:t (because no measurements have been collected yet), therefore by mathemat-
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ical induction the hazard estimate distribution conditioned on the failures is always
independent of the measurements.

Using a similar mathematical induction argument, suppose that the hazard and
event estimates are independent given the measurements and failures up to time
t−1, so P(h,s | y1:t−1, f 1:t−1) = φ t−1(s)ψ t−1(h). Then the Bayesian update for their
joint distribution at time t is given by

P(s,h | y1:t , f 1:t) =
P(yt , f t | s,h)φ t−1(s)ψ t−1(h)

∑s∈S ∑h∈H P(yt , f t | s,h)φ t−1(s)ψ t−1(h)
.

Factoring the numerator using the conditional independences described in Section
2, we get

P(s,h | y1:t , f 1:t) =
P(yt | f t ,s)P( f t | h)φ t−1(s)ψ t−1(h)

∑s∈S ∑h∈H P(yt | f t ,s)P( f t | h)φ t−1(s)ψ t−1(h)
,

and separating terms that depend on s from those that depend on h yields

P(s,h | y1:t , f 1:t) =
P(yt | f t ,s)φ t−1(s)

∑s∈S P(yt | f t ,s)φ t−1(s)
P( f t | h)ψ t−1(h)

∑h∈H P( f t | h)ψ t−1(h)
.

We recognize the right most fraction as the Bayesian update from (9), and the left
most expression can be factored as P(s,h | y1:t , f 1:t) = P(s | h,y1:t , f 1:t)ψ t(h), which
gives

P(s | h,y1:t , f 1:t)ψ t(h) =
P(yt | f t ,s)φ t−1(s)

∑s∈S P(yt | f t ,s)φ t−1(s)
ψ

t(h).

The fraction on the right is independent of h, so we conclude that P(s | h,y1:t , f 1:t) =
P(s | y1:t , f 1:t) = φ t(s), and we obtain the Bayesian update in (8). Therefore if the
estimate distributions of s and h are independent at time t−1 they will also be so at
time t, and by induction, if their initial distributions are independent then they will
remain so for all time.

Finally, in the case that the hazards and the events are deterministically related,
the standard recursive Bayesian filter yields

P(s | y1:t , f 1:t) =
P(yt , f t | s)P(s | y1:t−1, f 1:t−1)

∑s∈S P(yt , f t | s)P(s | y1:t−1, f 1:t−1)
,

which factors straightforwardly to the expression in (10). ut

For the remainder of the paper, we consider the case where the hazards and the
events are not deterministically related, so the filtering equations are given by (8)
with (5) for the event update, and (9) with (6) for the hazard update. The robots use
these filter equations to maintain estimates of the events and hazards in the envi-
ronment. Next we consider using these estimates to derive an information seeking
controller.
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4 Control Using the Mutual Information Gradient

In this section we will derive an analytic expression for the gradient of mutual in-
formation in general terms, then specialize it to use the distributions of events and
hazards found with the Bayesian filters in the previous section. This will lead to an
information seeking controller for our robots.

In information theory [Cover and Thomas, 2006, Shannon, 1948], the mutual in-
formation between two random vectors s and y is defined as

I(S;Y ) =
∫

y∈Y

∫
s∈S

P(s,y) log
P(s,y)

P(s)P(y)
dsdy,

where we let e be the base of the logarithm, and S and Y are the range of s and
y, respectively. We write s and y as though they were continuous valued for sim-
plicity, though similar expressions can be written for discrete valued and general
random variables. Mutual information indicates how much information one random
variable gives about the other. In our scenario, we want to position our robots so that
their next measurement gives the maximum amount of information about the event
distribution.

Consider the situation in which the distribution P(s,y) depends on a parame-
ter vector x ∈ R2n. We write Px(s,y) to emphasize this dependence. Likewise, let
Px(s) :=

∫
y∈Y Px(s,y)dy, Px(y) :=

∫
s∈S Px(s,y)ds, and

Ix(S;Y ) :=
∫

y∈Y

∫
s∈S

Px(s,y) log
Px(s,y)

Px(s)Px(y)
dsdy. (11)

In our case x is the positions of the robots, but the following result holds in a general
context. We can compute the gradient of the mutual information with respect to the
parameters x using the following theorem.

Theorem 2 (Mutual Information Gradient). Let random vectors s and y be jointly
distributed with distribution Px(s,y) that is differentiable with respect to the param-
eter vector x∈R2n over Qn ⊂R2n. Also, suppose that the support S ×Y of Px(s,y)
does not depend on x. Then the gradient of the mutual information with respect to
the parameters x over Qn is given by

∂ Ix(S;Y )
∂x

=
∫

y∈Y

∫
s∈S

∂Px(s,y)
∂x

log
Px(s,y)

Px(s)Px(y)
dsdy. (12)

Proof. The theorem follows straightforwardly by applying the rules of differenti-
ation. Notably, several terms cancel to yield the simple result. Differentiating (11)
with respect to x, we can move the differentiation inside the integrals since S and
Y do not depend on the parameters x. Then applying the chain rule to the integrand
results in
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∂ I(S;Y )
∂x

=
∫

y∈Y

∫
s∈S

∂P(s,y)
∂x

log
P(s,y)

P(s)P(y)
dsdy+

∫
y∈Y

∫
s∈S

P(s,y)
P(s)P(y)
P(s,y)

×
[

∂P(s,y)
∂x

1
P(s)P(y)

− ∂P(s)
∂x

P(y)P(s,y)
(P(s)P(y))2 −

∂P(y)
∂x

P(s)P(s,y)
(P(s)P(y))2

]
dsdy,

where we have suppressed the dependence on x to simplify notation. Bringing
1/(P(s)P(y)) in front of the brackets gives

∂ I(S;Y )
∂x

=
∫

y∈Y

∫
s∈S

∂P(s,y)
∂x

log
P(s,y)

P(s)P(y)
dsdy

+
∫

y∈Y

∫
s∈S

[
∂P(s,y)

∂x
− ∂P(s)

∂x
P(y | s)− ∂P(y)

∂x
P(s | y)

]
dsdy.

Consider the three terms in the second double integral. We will show that each of
these terms is identically zero to yield the result in the theorem. For the first term
we have∫

y∈Y

∫
s∈S

∂P(s,y)
∂x

dsdy =
∂

∂x

∫
y∈Y

∫
s∈S

P(s,y)dsdy =
∂

∂x
1 = 0.

For the second term we have∫
y∈Y

∫
s∈S

∂P(s)
∂x

P(y | s)dsdy =∫
s∈S

∂P(s)
∂x

(∫
y∈Y

P(y | s)dy
)

ds =
∂

∂x

∫
s∈S

P(s)ds = 0,

and the third term follows similarly if we interchange y and s. ut

Remark 1. The result holds for the general definition of mutual information and
makes no assumptions as to the distribution of the random variables, or the form of
the dependence of Px(s,y) on its parameters. The result also holds for generally dis-
tributed random variables including discrete valued ones (although we have written
the theorem for continuous valued ones).

Remark 2. It is interesting that the gradient of Ix(S;Y ) has the same form as Ix(S;Y )
itself, except that the first occurrence of Px(s,y) is replaced by its gradient with
respect to x. To the authors’ knowledge, this analytic expression for the gradient of
mutual information has not been reported in the literature despite the proliferation of
gradient based methods for maximizing mutual information in various applications
ranging from channel coding [Palomar and Verdú, 2006, Palomar and Verdú, 2007],
to medical imaging alignment [Viola and Wells III, 1997], to the control of robotic
sensor networks [Grocholsky, 2002]. In [Palomar and Verdú, 2007] the authors de-
rive a special case of Theorem 2 in which P(s) is not a function of x.

Remark 3. A similar expression holds for arbitrary derivatives of mutual informa-
tion. For example, the Hessian of mutual information can be shown to be
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∂ 2Ix(S;Y )
∂x2 =

∫
y∈Y

∫
s∈S

∂ 2Px(s,y)
∂x2 log

Px(s,y)
Px(s)Px(y)

dsdy

with essentially the same proof. In our robotic sensing scenario, this could be used
to examine the coupling between the control laws for neighboring robots.

We will use the result in Theorem 2 to design a controller for our robotic sensor
network. Writing the result in terms of quantities that we already know, we have

∂ Ix(S;Y )
∂x

= ∑
y∈{0,1}n

∑
s∈S

∑
h∈H

∂Px(y | s,h)
∂x

φ
t(s)ψ t(h)

× log
∑h∈H Px(y | s,h)ψ t(h)

∑s∈S ∑h∈H Px(y | s,h)φ t(s)ψ t(h)
, (13)

where φ t(s) and ψ t(h) come from the Bayesian filter equations (8) and (9), respec-
tively, and Px(y | s,h) comes from (7). The only remaining necessary term is the
gradient of the measurement likelihood, which we can compute straightforwardly
from (7) to be

∂Px(yi = 1 | s,h)
∂x

= P( fi = 0 | h)P(yi = 0 | s,h)∑ j|s j=1
1

1−µ(xi,q j)
∂ µ(xi,q j)

∂xi

−P( fi = 0 | h)P(yi = 1 | s,h)∑k|hk=1
1

1−α(xi,qk)
∂α(xi,qk)

∂xi
, (14)

and when yi = 0 it is simply the negative of this, ∂Px(yi=0|s,h)
∂x = − ∂Px(yi=1|s,h)

∂x . We
propose to use an information seeking controller of the form

xi(t +1) = x(t)+ k
∂ Ix(S;Y )

∂xi∥∥ ∂ Ix(S;Y )
∂xi

∥∥+ ε

, (15)

where k > 0 is a maximum step size, and ε > 0 is a small factor to prevent sin-
gularities when a local minimum of mutual information is reached. Although this
controller uses a gradient, it is not, strictly speaking, a gradient controller and a for-
mal analysis of its behavior would be expected to be quite difficult. This is because
the mutual information changes at each time step due to the integration of new sen-
sor measurements into the Bayesian event estimate and hazard estimate. Intuitively,
the controller moves the robots in the direction of the highest immediate expected
information gain. An alternative approach would be to use a finite time horizon over
which to plan informative paths using the information gradient. Indeed, our con-
troller can be seen as a special case of this with a horizon length of one time step.
Such an approach would have an exponential time complexity in the length of the
horizon, however, making even a short time horizon computationally impractical.

Empirically, the controller drives the robots to uncertain areas while veering away
from suspected hazard sites, learned through the failures of previous robots. The
robots eventually come to a stop when they estimate the event state s of the environ-
ment with high confidence (i.e. when the entropy of φ t(s) approaches zero). While
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hazard avoidance does not explicitly appear in the control law, it is implicit as an
expected robot failure will decrease the amount of information gained at the next
time step. This is true even when robots are replaced, since the mutual information
gradient is agnostic to the replacement of sensors. It only considers the information
gain it expects to achieve with its current robots by moving them in a particular di-
rection. So when deciding in what direction to move, each robot balances the benefit
of information received with the possibility of failure by moving in that direction.
As future work, it would also be interesting to explicitly account for sensor losses
by enforcing a total sensor loss budget, or a maximum sensor loss rate.

4.1 Computational Considerations

Unfortunately, one can see from (13) that the computation of ∂ Ix(S;Y )/∂x is, in
general, in O(n2n|H ||S |) where n is the number of sensors. For example, if the
hazard and event states are both binary, we have a complexity of O(n2n+ms+mh),
where ms is the number of event grid cells and mh is the number of hazard grid
cells. Therefore this algorithm is not computationally practical for even a moderate
number of robots or grid cells.

We are currently investigating two methods for decreasing the complexity of
the control strategy, which will be detailed in a paper that is soon to follow. One
involves a successive grid refinement procedure. In this procedure the robots begin
with a coarse grid. Those grid cells that reach a threshold probability of containing
an event or hazard are re-partitioned into a finer grid, while those grid cells with
small probability are lumped together into a large cell. This procedure has the benefit
of delivering arbitrarily fine event and hazard maps. The simulations described in
Section 5 use a simplified version of this procedure. The second method that we are
investigating is to assume a limited correlation structure among the grid cells in the
environment. If two grid cells are statistically independent when they are separated
by more than a fixed distance, the algorithm complexity reduces significantly. There
also exist other methods for overcoming computational limitations, which include
using Monte Carlo methods to approximate the sums in (13) in a decentralized way,
as in [Julian et al., 2011], or particle filters as in [Hoffmann and Tomlin, 2010].

5 Simulation Results

We carried out Matlab simulations with the controller (15) over R2 with the sensor
detection probability

µ(xi,q j) = Pfp +
1−Pfp−Pfn

1+ exp
(
c(‖xi−q j‖− rsense)

) ,

with Pfp = 0.01,Pfn = 0.05,c = 1,rsense = 2, and the robot failure probability

α(xi,q j) = Pf,far +(1−Pf,far−Ps,near)exp
(
−
‖xi−q j‖2

2σ2
fail

)
,
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with Pf,far = 0,Ps,near = 0.1,σfail = 1.25, and uniform initial event and hazard dis-
tributions. The control gains used in (15) were k = 0.1 and ε = 10−10. We used a
simplified version of the grid refinement procedure described in Section 4.1 in which
the environment was first divided into a 4×4 grid until the entropy of the event dis-
tribution dropped below 0.1, indicating a high degree of certainty in the estimates
at that resolution. Then the entire grid was refined to 8×8, and when the entropy
again dropped below 0.1, it was refined to 16×16. At any time if the probability
of occupancy for an event (or hazard) was less than 10−15 for a cell, its occupancy
probability was set to zero, the event (or hazard) distribution was renormalized ap-
propriately, and that cell was ignored in all future event (or hazard) distribution
updates. This successive grid refinement and pruning was found to dramatically im-
prove computation speed.

The results of simulations with three robots, three events, and one hazard are
shown in Fig. 2. The failure of two robots can be seen in Fig. 2(a) by the discontinu-
ities in the green and black robot paths (new robots are introduced at the lower left
corner of the environment to compensate for the failed ones). The event distribution
is shown in Fig. 2(b) where the locations of the three events have been localized
down to one grid square. Similarly, Fig. 2(c) shows the hazard distribution, in which
the hazard has been localized to a 4×4 block of grid squares. The robots do not seek
to refine the hazard estimate because it is sufficient for them to avoid the hazard an
continue mapping the events. The decreasing trend in the entropy (or uncertainty)
of the event and hazard estimates can be seen in Figs. 2(d). The mutual information,
shown in Fig. 2(e), can be interpreted as the expected decrease in entropy, hence it
tends to be large when there are large entropy drops. The entropy jumps at iteration
266 and 383, when the grid is refined to 8×8 and 16×16, respectively.

6 Conclusions

In this paper we proposed a multi-robot control policy that utilizes measurements
about events of interest to locally increase the mutual information, while also us-
ing the history of robot failures to avoid hazardous areas. The central theoretical
contribution of this paper is a new analytical expression for the gradient of mu-
tual information presented in Theorem 2, which provides a principled approach to
exploration by calculating robot trajectories that lead to the greatest immediate in-
formation gain. Despite minimal data from the binary sensors and a binary failure
signal, the robot team is able to successfully localize events of interest and avoid
hazardous areas. The event state and hazard fields over the environment are esti-
mated using recursive Bayesian filters. The main drawback of the approach is high
computational complexity, which makes the controller difficult to compute in real-
istic environments. We are currently investigating several techniques for reducing
the complexity in order to make the algorithm more practically feasible. We are
also investigating methods to decentralize the algorithm to run over a multi-robot
network.
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Fig. 2 This figure shows simulation results for three robots in an environment initially divided
into a 4×4 grid, then refined to an 8×8 grid at the 266th iteration, and finally to a 16×16 grid at
the 383rd iteration. Frame 2(a) shows the paths of the three robots which start from the lower left
of the environment. The red ’×’ marks the location of a hazard and the three blue ’O’s show the
locations of events. The robots with the solid green and dotted black paths both fail once when
they come too close to the hazard, after which two replacement robots are introduced at the lower
left. Frames 2(b) and 2(c) show the final event and hazard distribution estimate, respectively. The
events have been localized down to one grid square and the hazard down to a 4×4 region. Frame
2(d) shows the entropy, a measure of uncertainty, of the event (solid) and hazard (dotted) estimates.
Both entropies decrease as the robots learn the event and hazard locations. They jump at the 266th
and 383rd iteration when the grid is refined, as expected. The mutual information (or the expected
drop in entropy) verses time is shown in frame 2(e).
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[Howard et al., 2002] Howard, A., Matarić, M. J., and Sukhatme, G. S. (2002). Mobile sensor
network deployment using potential fields: A distributed, scalable solution to the area coverage
problem. In Proceedings of the 6th International Symposium on Distributed Autonomous Robotic
Systems (DARS02), Fukuoka, Japan.

[Julian et al., 2011] Julian, B. J., Angermann, M., Schwager, M., and Rus, D. (2011). A scalable
information theoretic approach to distributed robot coordination. In Proceedings of the IEEE/RSJ
Conference on Intelligent Robots and Systems (IROS). Sumbitted.

[Krause and Guestrin, 2007] Krause, A. and Guestrin, C. (2007). Near-optimal observation selec-
tion using submodular functions. In Proceedings of 22nd Conference on Artificial Intelligence
(AAAI), Vancouver, Canada.

[Krause et al., 2006] Krause, A., Guestrin, C., Gupta, A., and Kleinberg, J. (2006). Near-optimal
sensor placements: Maximizing information while minimizing communication cost. In In Pro-
ceedings of Information Processing in Sensor Networks (IPSN), Nashville, TN.

[Krause et al., 2008] Krause, A., Singh, A., and Guestrin, C. (2008). Near-optimal sensor place-
ments in gaussian processes: Theory, efficient algorithms and empirical studies. Journal of Ma-
chine Learning Research, 9:235–284.

[Li and Cassandras, 2005] Li, W. and Cassandras, C. G. (2005). Distributed cooperative coverage
control of sensor networks. In Proceedings of the IEEE Conference on Decision ans Control,
and the European Control Conference, Seville, Spain.

[Lynch et al., 2008] Lynch, K. M., Schwartz, I. B., Yang, P., and Freeman, R. A. (2008). Decen-
tralized environmental modeling by mobile sensor networks. IEEE Transactions on Robotics,
24(3):710–724.

[Martı́nez, 2010] Martı́nez, S. (2010). Distributed interpolation schemes for field estimation by
mobile sensor networks. IEEE Transactions on Control Systems Technology, 18(2):419–500.
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