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Abstract The use of robots for scientific mapping and exploration can result in
large, rapidly growing data sets that make complete analysis by humans infea-
sible. This situation highlights the need for automated means of converting raw
data into scientifically relevant information. This paper applies a Bayesian non-
parametric model, the variational Dirichlet process, to clustering large quantities
of seafloor imagery in an unsupervised manner. It has the attractive property that it
does not require knowledge of the number of clusters a-priori, which enables truly
autonomous sensor data abstraction. The underlying data representation uses de-
scriptors for colour, texture and 3D structure that are obtained from stereo imagery.
This approach consistently produces easily recognisable clusters that approximately
correspond to different habitat types. These clusters are useful in observing spatial
patterns, focusing expert analysis on subsets of seafloor imagery, aiding mission
planning, and potentially informing real time adaptive sampling. We present results
from two different surveys with large spatial extents, consisting of thousands of
stereo image pairs. We use hand labelled observations from one of these surveys to
compare the variational Dirichlet processes’ performance to other clustering algo-
rithms.

1 Introduction

The increasing use of robots in scientific mapping and exploration missions has
resulted in large and growing data sets that potentially contain a wealth of semantic
information relevant to scientists and mission planners.

While supervised classification approaches have shown great promise in answer-
ing specific questions (e.g., object and scene recognition) [19, 27], they require train-
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ing sets produced by human labelling of examples. Depending on the application,
this can represent a substantial (and expensive) human effort. Producing training
data and then evaluating system performance becomes a bottleneck that limits the
practical use of fundamentally sound classification approaches.

There is, however, scope for the use of unsupervised classification or clustering
approaches for a broad range of applications that can benefit from automatic, pre-
liminary summaries of data. Document analysis [5] as well as image databases [21]
clearly demonstrate this. In the context of data gathering with robots, being able to
cluster survey images with minimal human input allows scientists and mission plan-
ners to easily assign meaningful (albeit coarse) labels to a low number of clusters
of images rather than to thousands of individual images. These clusters provide an
approximate representation of what was surveyed, while the spatial distribution of
these clusters allows scientists to generate new hypotheses related to these spatial
patterns and the content of the clusters.

While there are several clustering techniques available, the most commonly used
ones require specifying the number of clusters or use tests that approximate some
measure of parsimony. An unsupervised approach that also determines the number
of clusters in the data is attractive as it could form the basis of a truly autonomous
approach to sensor data abstraction, which in turn could inform adaptive behaviours.
Applications using communication links with limited bandwidth (underwater explo-
ration) or large latencies (planetary exploration) stand to benefit from such capabil-
ities.

Research in this area is exemplified by [11] wherein clustering is applied terrain
data. Sequential observations of terrain are provided by a small amphibious robot’s
actuator feedback sensors. These observations are then clustered by learning Gaus-
sian mixture models (GMM) or k-nearest neighbour (KNN) models using simulated
annealing. This work has also been applied to visual imagery in [12], with the re-
sulting image classifications used to guide the robot over a coral reef. Unfortunately
this approach requires lengthy offline training, and there is no facility to infer the
number of clusters from the data. In a similar fashion, [28] use KNN to classify data
from accelerometers on an autonomous ground vehicle into terrain classes. They
also train a GMM to detect ‘novel’ observations during operation, and have the
ability to create new classes. This method still requires an offline supervised train-
ing phase, yet can incorporate new information. Unfortunately the algorithm cannot
disambiguate multiple new classes at one time.

This paper applies a Bayesian nonparametric approach to data clustering in
robotic applications. The use of a nonparametric technique has the advantage of de-
termining the number of clusters automatically. We use a variational approximation
that allows for fast, deterministic inference in large scale data sets. The underlying
model is naturally extendible for incremental use and hierarchical representations.

Bayesian nonparametric models are data driven, so performance depends heav-
ily on using discriminative features to represent input data. We introduce a set of
tailored descriptors for colour, texture and 3D structure that are suitable for seafloor
stereo imagery. These features were selected based on the Gaussian mixture crite-
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ria of the clustering model, and also upon prior experience with a variety of other
benthic image datasets that were collected across a number of different dives.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the Bayesian nonparametric model used in this paper. In Section 3
we introduce the image and 3D descriptors that serve as the inputs to the model.
Experimental results based on Autonomous Underwater Vehicle (AUV) surveys are
presented in Section 4, and in Section 5 we conclude and discuss future work.

2 The Variational Dirichlet Process model

Bayesian nonparametric models have the property that they only increase in com-
plexity as the size of the observable dataset increases. In the case of mixture models,
this results in the choice of lowest number of clusters that can sufficiently explain
the data [23]. The Bayesian nonparametric model used in this work is the (non-
accelerated) variational Dirichlet process (VDP) model derived by Kurihara et al
[18]. We will now briefly introduce the VDP and some specifics when learning by
variational Bayes.

2.1 Variational Dirichlet Process for Gaussian mixtures

The VDP can be derived for any exponential family mixture model. In this paper we
use a Gaussian mixture model since it lends itself well to clustering applications.
The objective is to group N observations of the environment, X = {x;}? |, with
a dimensionality D, into an unspecified number of clusters (indexed by k). Each
observation has a latent indicator variable, Z = {z,-}fvz 1» that assigns it to a cluster.
This model assumes each cluster is a Gaussian with its own mean, 1, and precision,
Ay, parameters. Ideally these clusters represent groups of data that are semantically
similar. The whole dataset is then represented by a weighted sum of these Gaussian
clusters, with weight parameters 7,

p(xi) =Y MmN (xil . AL ). M
k

The mixture weights make up the marginal probability distribution of the latent
variables, p(z;) = [T, 77:,:[1’:](], where 1[-] is an indicator function, and returns 1
when the condition in the brackets is true, and 0 otherwise. When used as a prior
over the model parameters, (7, i, Ay), the Dirichlet Process allows for a mixture
model to have a countably infinite number of clusters. However, only a few clusters
actually exist with observations belonging to them in the learned model.

The Dirichlet process for this model is realised as a stick-breaking process [14].
This process allows for block updates of the indicator variables, and so suits
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Fig. 1: Graphical model of a Gaussian mixture variational Dirichlet process. The
shaded node is observable, the dots are point estimates, and the plates denote repli-
cation.

Expectation-Maximisation style algorithms such as variational Bayes. The mixture
weights are a function of an infinite collection of ‘stick lengths’, V = {vk},";’:l,

k—1
(V) = v [J(1 —v)). 2)
j=1

These stick lengths are drawn from a Beta distribution,
pv) =B(1,a). 3)

A conjugate Gaussian-Wishart prior distribution, with hyperparameters {m, 3, W, v},
is placed over the Gaussian mean and precision parameters,

Pt Ak) = p(y|Ak) p(Ak) )
= N(ma (ﬁAk)_l) W(W7 V) :
In this way, we represent the Dirichlet process prior, DP(o, N W), for our Gaussian

mixture model. The graphical model of this Gaussian mixture version of the VDP
is shown in Fig. 1.

2.2 The Variational Bayes algorithm

Typically in Bayesian learning, the objective is to tractably learn a model with latent
variables, Z, and latent model parameters, 0, that maximises the log marginal data
likelihood,
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log p(X) = log / p(X,Z,0)dZd6. )

In general, evaluating (5) is intractable. Variational Bayes [2] uses the mean field ap-
proximation for the joint probability density, p(X,Z, 0) =~ ¢(Z) ¢(0), in conjunction
with Jensen’s inequality to place a lower bound on (5),

p(X,Z,6)

fogp(X) = log [ 4(2)q(6) | 2520

> /q(Z)q(G) [log PX.ZIB) 1o p(G)} d7.d0,

q(Z) q(0)
(X,Z|0) p(0)
oz ¢ q<e>] '

This last term is the free energy functional, F[gq(Z),q(6)]. It allows for tractable op-
timisation of the latent variable distributions, ¢(Z) and ¢(0), when we use conjugate
exponential family models.

By taking functional derivatives dF/dq(Z) = 0, and enforcing the constraint
Jq(Z)dZ = 1, we can derive an expression for the distribution over the indicator
variables. This results in the Variational Bayes Expectation (VBE) step,

} dZde,

—Eqp, [log P (6)

1
4(2) = - exp {Eq, logp(X, Z|6)]} (7
where Zyz is a normalisation constant. We also need to learn the parameter distri-
bution for the model given the observations and labels. To do this we again take
functional derivatives d.F /dq(0) = 0 and apply the constraint [¢(60)d6 = 1. This
results in the Variational Bayes Maximisation (VBM) step,

o(6) = 5 p(8)exp {E,,llog p(X. ZJ6)]}. ®
Practically, this step gives us point estimates of the variational posterior hyperpa-
rameters which govern the distribution ¢(0). Notice that (8) includes a prior term
over the parameters, p(0). This results in Bayesian updates over these parameters
that penalise model complexity. The variational Bayes algorithm cycles between
updates to the VBE and VBM steps in (7) and (8) until the free energy functional
(6) converges to a local maximum. See [2, 3] for proofs and more detail.

2.3 Variational Bayes for the Variational Dirichlet Process

The VDP as presented by [18] is for the general exponential family mixtures. In this
section we present the algorithm for Gaussian mixtures. This VDP has an infinite
number of classes, however only K classes actually have observations associated
with them in its variational approximation. All variational posterior distributions
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that index k > K are assigned zero probability, i.e. g(z; > K) = 0 as per [17], allow-
ing the free energy for the VDP to be tractably calculated. We actually minimise
negative free energy, to be consistent with the convention of minimising negative
log likelihood,

Fu= Z { a [log Evlj] + By, {log (“"] } 25 ©)

(e, A

Here £; is the complete-data log-likelihood,

£i = E‘Iz,'-Vﬁu‘,A [IOgP(X,’,Zi|V, ,LL,A)]

K
—log ) exp {Eqv logm] +E, , [log\'(xi ,uk,Ak)]} . (10)
k=1

The details of these expectations can be found in [18] and [4]. By minimising (9),
we naturally trade-off fitting the model hyperparameters to the data (10), against
full Bayesian model complexity penalty terms. The VBE step for the VDP can be
factorised, ¢(Z) =[], q(zi = k), where,

q(zi=k)=exp {]Eqv logm] +Eq,, [log NV (x| g, Ax)] — ﬁ,} . (11)

The VBM step for this algorithm can also be factorised over the parameters,
q(0) =TTrq(vk) (s, Ax). Since this model is fully conjugate, the variational pos-
teriors will have the same forms as the priors,

q(vi) = B(ux, 00) (12)
a0 = N (B, (B~ ) W (Wi 7). a3

The variational posterior hyperparameters (denoted by ~ ) are simply linear com-
binations of the prior hyperparameters (o, 3,v,m, W) and the sufficient statistics
of the data weighted by ¢(z; = k). Details again can be found in [18] and [4]. The
stick-breaking construct in (2) enforces an order to the clusters, and this order must
be preserved when updating the hyperparmeters in (12). The variational Bayes al-
gorithm for the VDP is given in Algorithm 1.

Variational Bayes can automatically eliminate superfluous clusters, however it
cannot explicitly create clusters. The greedy cluster splitting heuristic used by [18]
for cluster creation is also implemented in this work. The variational Bayes algo-
rithm is run over all of the data until it converges. The resulting Gaussian clusters
are then split in a direction perpendicular to their principal components. These splits
are then refined by running variational Bayes over the resulting clusters. Only a sub-
set of the data needs to be used for this refinement stage, which dramatically reduces
the run-time. If the best split (max free energy) increases the overall free energy of
the model by more than a threshold, it is accepted. Variational Bayes is then run



A BNP Approach to Clustering Data from Underwater Robotic Surveys 7

Algorithm 1 The VDP variational Bayes algorithm

Require: X, initial ¢(Z), prior = {ot,m, 3, W, v}
Initialise ]—",E[) to some high value.
repeat .
VBM: update {8y, my, ﬁk,Wk, Vk}kK:l , @ is dependent on cluster size order
VBE: update ¢(Z)
FitV e ~Fla@),q({ve mAdE)]
until (7 - 7YY A <

return Fi Y, q4(Z), posterior = { &y, i, Br, Wi, i 1K,

over all of the data again, and the splitting process is repeated. If the best split is not
accepted, the algorithm terminates.

3 Features

The VDP is a Bayesian nonparametric model that infers its structure entirely from
the data to be clustered. Consequently, the descriptors need to be chosen such that
the distance measure between them behaves similarly to the ‘distance’ between the
corresponding semantic content of the images.

Most attempts at automated image-based classification use features extracted
from monocular images to derive descriptors. Their success is ultimately limited
by the 2D nature of the images and the lack of any notion of scale.

Features such as spin maps [15] or Local Feature Histograms [13] have been
used for 3D object detection but they are not well suited for unstructured 3D scenes.
Simple habitat complexity indices, such as rugosity, slope and aspect are often used
as a proxy for marine biodiversity in the ecological literature [8, 20]. These mea-
sures are typically collected in situ by divers using chain-tape methods or profile
gauges. An autonomous underwater vehicle (AUV) capable of high precision navi-
gation and equipped with stereo cameras can recover bathymetry at fine resolutions
over relatively large, contiguous extents of seafloor. This bathymetry is then used to
extract the 3D features at multiple scales, and combined with 2D features to derive
the image descriptors [6, 10].

3.1 Image appearance features

An important consideration is that the features generalise well and are robust to fac-
tors such as rotation and changes in illumination. Commonly used feature detectors,
for example SIFT [19], are useful for object recognition, but need to be incorporated
into complex frameworks, such as a Bag of Features approach [21], in order to be
useful for scene description. Other approaches, such as the ones used by [26] have
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shown promise for natural scene detection, but require prior training to generate fil-
ters for known scene types. We have adopted relatively simple measures of colour
and image texture to describe the overall appearance of the scene contained in an
image, with no prior training.

Texture — we use Local Binary Patterns (LBP) [22]. It can be computed at mul-
tiple scales and made to be uniform and rotation invariant. The LBP operator is by
definition invariant against monotonic transformations in illumination. This makes
it useful for texture classification with non-uniform illumination conditions. Com-
pared to Gabor wavelet texture classification [9], LBPs have been found to yield
similar levels of performance with much lower computational cost and without the
need to predefine a filter bank [25].

Colour — We use mean shift image segmentation in the L*a*b* colour space for
our colour features. Mean shift image segmentation is a non-parametric technique
useful for delineating arbitrarily shaped clusters in a complex multimodal feature
space [7]. The segmentation is done in L*a*b* colour space in which colour simi-
larity can be measured simply by computing the L2 norms. From the segmentation
output we can derive several descriptors:

1. Normalised average segment size — the average size of the homogeneously
coloured segments, in pixels, normalised by the number of pixels in the image.

2. Mean of L*a*b* colour modes — the average of the predominant colour of the
segments.

3. Standard deviation of L*a*b* colour modes — the variability of the predominant
colours of the segments.

3.2 Terrain complexity features

The structure obtained from the stereo imagery is in the form of Delaunay triangu-
lated meshes which are made up by a set of triangular faces that connect vertices to
make a 3D surface [16]. The stereo derived 3D measures that are considered in this
paper are rugosity, slope and aspect [10].

Rugosity — This is a measure of terrain complexity which is known to corre-
late with marine biodiversity. The rugosity index for a location in the surface mesh
is calculated by centering a window of specified size over the location. Then the
area of the contoured surface bounded by the window is divided by the area of the
orthogonal projection of the surface onto a plane.

Slope — Slope refers to the angle between the plane of best fit and the horizontal
plane. This angle is equivalent to the angle between the normal vectors of the two
planes and can be obtained from their dot product.

Aspect — Aspect refers to the direction that the surface slope faces. It is defined
as the angle between the positive North axis and the projection of the normal onto
the North-East plane.
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3.3 Feature selection

An important consideration when selecting an appropriate feature set is the normal-
ity assumption of the VDP model. More specifically, a feature descriptor distribution
needs to be representable by a mixture of Gaussians. A multimodal Gaussian dis-
tribution is preferable, since it will lead to more discrimination between clusters. In
order to assess this we can look at the histograms of each feature.

Aspect is a value in the range [— 7, 7]. For analytical purposes, it is useful to split
aspect into vector components to eliminate the discontinuity associated with angular
wrap-around. This can be represented as ‘northness’ and ‘eastness’. However, even
these vector components of aspect violate the normality assumption, and cannot be
used with the VDP!.

Some variables do not occupy a distribution that can be represented as a mixture
of Gaussians. However, it may be possible to transform these variables to make
them ‘comply’. For instance, rugosity has a log-normal type distribution, which
leads to a well-distributed, multi-modal feature that can be easily approximated by
a mixture of Gaussians when its logarithm is taken. Other features, such as slope
and normalised average segment size, can be transformed in a similar way.

Table 1 shows the selection of features that were used to generate the results in
this paper. Extensive testing over multiple sites covering a large latitudinal range in
Australia suggests this approach consistently produces easily recognisable, coarse
habitat types that are useful in observing spatial patterns and in focusing further,
detailed analysis of seafloor imagery.

Table 1: Image features used in the results, D;,; = 23

Feature| Window size Dimensionality
log(rugosity — 1)|  image 1
log(rugosity — 1)| 5 x5m 1
log(slope)| 5 x5m 1
log(rugosity — 1)| 10 x 10m 1
log(slope)| 10 x 10m 1
mean(L*a*b* segment mode)|  image 3
st. dev.(L*a*b* segment mode) image 3
log(mean(L*a*b* segment size))| image 1
st. dev.(Grey-scale image pixels) image 1
LBPs (radius of 1, 8 samples) image 10

1 We suspect that aspect as a descriptor is likely to be a useful predictor of habitat types if combined
with other variables such as slope and current flow velocity to obtain a notion of exposure.
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4 Results

In this section we use the VDP to cluster seafloor stereo imagery obtained by an
AUV. Data from two separate surveys are clustered. The first survey was conducted
on the O’Hara marine protected area (MPA) in Tasmania, Australia. The VDP is
compared to hand labels and other clustering algorithms on this dataset. The second
dataset was obtained in Scott Reef, Western Australia.

The AUV is programmed to follow the seafloor at an altitude of two metres.
However, in areas that feature large changes in relief, the AUV may deviate from
this significantly, causing changes in the illumination and extent of the scene. In the
interest of using well illuminated images, we do not cluster those that were taken at
an altitude of more than 3.5 metres.

The most computationally intensive task in generating the results is extracting
the stereo and image features. We typically use full size images for stereo feature
extraction (1360 x 1024 pixels) and one-quarter size images for image feature ex-
traction (340 x 256 pixels). These datasets have on the order of 10,000 images each,
so extracting the feature descriptors typically takes a few hours. Most of the com-
putation is in segmenting the images for the L*a*b* descriptors. Missions also typ-
ically take a number of hours to complete, so we are confident this processing could
be performed in real-time. All of the dimensions of the data are standardised for
best performance.

We chose an uninformative Stick-breaking prior by setting the prior hyperpa-
rameter o = 1. For the Gaussian mixtures we chose semi-informative prior hyper-
parameters; m = mean(X), f =1,v=D,and W = vaidth?Lc’:’)‘v”(‘X)ID. Here D is the
dimensionality of the data, QLC’g‘V”éX) is the largest eigenvalue of the covariance of the
data, Ip is the identity matrix, and C,,;4, is left as a tuneable parameter that encodes
the a-priori ‘width’ of the mixtures.

Clustering these datasets with a C++ implementation of the VDP takes on the
order of seconds to minutes depending on the number of images. All results are
generated in Matlab R2010b/C++ using a 2.8 GHz Core 2 Duo Intel processor with
4 GB of 1067 MHz RAM.

4.1 O’Hara Marine Protected Area, Tasmania

This dataset contained 11,000 stereo image pairs featuring 10 classes based on hand
labels provided by a marine scientist. Given the availability of hand labels for this
dataset, it was used to compare the VDP to two other unsupervised clustering algo-
rithms. One of the algorithms used for comparison is a variant of self-tuning Spectral
Clustering (SC) [29] with a sparse similarity matrix and the eigen-gap heuristic to
choose K. We also used Expectation-Maximisation for Gaussian Mixture models
for different values of K, using the Bayes Information Criterion to select the best K
(GMM+BIC). These are both Matlab implementations.
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Table 2: Autonomous underwater vehicle dataset clustering results. The VDP with
different prior C,;4, parameters, GMM+BIC and SC algorithms were compared
to hand labels using the V-measure. The GMM+BIC and SC algorithms are Matlab
implementations, and so are not directly comparable to the VDP in terms of runtime.

Algorithm|V—measure Homogeneity Completeness K Time F, (x10°)

VDP, Cyigin = 01| 0.7125 0.6943 0.7316 7 178s  5.726
VDP, Cypigiy = .02| 0.7197 0.6824 07614 6 14.1s 5843
VDP, Cypigin = 04| 0.7310 0.6841 0.7847 6 11.6s 5997
GMM + BIC| 0.6789 0.7318 0.6331 10 (81.0s) N/A
SC| 0.6014 0.4460 09228 3 (72s) N/A

For these experiments we compare the clustering results to the hand labelled
dataset using the V-measure [24]. The V-measure is the harmonic mean of two op-
posing measures; Homogeneity and Completeness. A cluster solution with a high
level of homogeneity has data points that are members of a cluster comprised of
only one single ground truth class. A cluster solution with a high level of complete-
ness has all data points that are members of a single truth class belonging to a single
cluster. All measures range from zero to one, with one being a perfect score. Ho-
mogeneity and Completeness are weighted equally in the V-measure for all of our
experiments.

The results are summarised in Table 2 for the VDP with three C,,;;,, values. The
VDP for all C,,;4, values has a better V-measure than SC and the GMM+BIC algo-
rithms. The GMM+BIC has the highest homogeneity measure, and SC the highest
completeness. However, homogeneity tends to reward a higher number of classes,
while completeness a lower number.

The clustering results for the VDP with C,;z;, = 0.04 is shown in Fig. 2. It
can be seen in Fig. 2d that the VDP clusters tend to occupy certain depth ranges,
which is consistent with habitat distributions. This suggests that the VDP clusters
are coarsely representative of habitat types. Furthermore, in Fig. 2b, visually dis-
similar clusters, such as sand, screw shell rubble and reef, are separate in the feature
space, suggesting that the features are successfully capturing some of the semantic
meaning in the scenes.

4.2 Scott Reef, Western Australia

A 3D reconstruction of the Scott Reef dataset is shown in Fig. 3c. It is a dense, fully
overlapping grid survey consisting of 50 parallel track-lines, each 75m long and
spaced one meter apart. This survey appears to have roughly three habitat types; a
reef habitat, a sand habitat, and a partially populated substrate at the interface of the
reef and sand habitats. Unfortunately we did not have a hand labels for this dataset,
however because of its dense nature it is easy to visually validate the clustering
results.
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Fig. 2: O’Hara MPA results for the VDP with C,;z;, = 0.04. (a) Six sample im-
ages from each cluster found by the VDP. (b) A projection of a histogram of the
observations (bins) and the VDP clusters (ellipses) onto the first two principal com-
ponents of the data. The intensity of the bins indicates the number of observations.
(c) Class labels overlaid on the vehicle path showing consistent spatial distribution
of the clusters. (d) The clusters in this dive are highly correlated with depth despite
depth not being used as a feature. The resulting clusters correspond roughly to kelp
dominated habitats in depths below 45 m, patch reef dominated by sponges between
45 and 70 m and sand and screw-shell rubble below 70 m.

Approximately 9,800 stereo image pairs were obtained on this dive, and the VDP
took 9.9 seconds to cluster them with C,,;4;, = 0.02. Six clusters were found by the
VDP, the results are summarised in Fig. 3. We tried the same range of C,;4;, values
as the O’Hara dataset, the results did not vary drastically, but a value of 0.02 yielded
slightly more visually appealing clusters. It is apparent from Fig. 3d that the clusters
are spatially contiguous, despite the VDP having no notion of the spatial layout
of the dive. Some of this contiguity could be attributed to the large window size
features that have been used. However, it is our experience that we achieve these
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Fig. 3: Scott Reef results with C,,;4;, = 0.02. (a) Six sample images from each clus-
ter found by the VDP. (b) A projection of a histogram of the observations and the
VDP clusters onto the first two principal components of the data. (c) A visual re-
construction of the Scott Reef dataset showing the distinct habitats featured in this
dataset. (d) Class labels overlaid on the vehicle path with each dot corresponding
to the location of a stereo pair image, and its colour to a cluster. The clusters in
this dataset are spatially contiguous despite the VDP having no notion of the spatial
layout of the dive.

spatial patterns using just image level features, and that including large window size
features tends to generate more distinct clusters.
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5 Conclusion and Future Work

The Variational Dirichlet Process is a completely data driven algorithm. In combi-
nation with carefully chosen features, the VDP is a powerful tool for aggregating
images of the benthos into clusters without any human supervision. It outperforms
Spectral Clustering, and Gaussian mixtures learned with EM and the Bayes infor-
mation criterion on this type of data when compared to hand labels. The results also
appear to exhibit high spatial correlation despite the VDP not accounting for the spa-
tial layout of the images. This suggests that the clusters discovered in these datasets
approximately represent habitat types, and usefully summarise these datasets. We
have received positive feedback from benthic ecologists who have used the output
from our system. The labels generated by the VDP have also been used to extrapo-
late the presence of the habitats away from the survey area [1], demonstrating that
this algorithm could inform adaptive sampling decisions.

We used image appearance features based on Mean Shift Segmentation and Lo-
cal Binary Patterns, combined with multi-scale 3D features of rugosity and slope
(inspired by marine ecology literature) to generate the results presented in this pa-
per. We intend to conduct a more thorough study on the selection and comparison
of a wider set of image appearance and 3D features.

The combination of these features, and the VDP algorithm has been used on
many visual underwater datasets, with many varying habitat types. They have
proven to generalise very well. We also see no reason why this algorithm and a
similar set of features could not be applied to other visual datasets, such as aerial or
space-based robotic surveys.

Currently we are deriving various hierarchical clustering models based on the
VDP. Such models may be used to relate habitat clusters between different dives,
while preserving the cluster proportions within dives. Generative models such as the
VDP and other hierarchical versions provide a natural framework for incrementally
learning datasets. They can cluster observations from an autonomous vehicle as it
observes the seafloor, and can also combine data from multiple survey missions
without requiring vast processing capability. Our goal is to create algorithms based
on these incremental generative models that can further inform expert analysis on
subsets of seafloor imagery, aid in mission planning, as well as inform real time
adaptive sampling behaviours.
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