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Abstract We present rosbridge, a middleware abstraction layer which provides
robotics technology with a standard, minimalist applications development frame-
work accessible to applications programmers who are not themselves roboticists.
Rosbridge provides a simple, socket-based programmatic access to robot interfaces
and algorithms provided (for now) by ROS, the open-source “Robot Operating Sys-
tem”, the current state-of-the-art in robot middleware. In particular, it facilitates the
use of web technologies such as Javascript for the purpose of broadening the use
and usefulness of robotic technology. We demonstrate potential applications in the
interface design, education, human-robot interaction and remote laboratory environ-
ments.

1 INTRODUCTION

At present, we are at the cusp of a revolution in robotics. For most of the field’s
history, scientific progress has been hindered by the fact that to have a robot meant
investing a great deal in its mechanical engineering and low-level control systems.
The result being that every researcher had a different system with different capa-
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bilities. Furthermore, robots were extremely expensive, both in terms of money and
researchers’ time. Only very well-funded laboratories could have a robot, and the
scope of the robot’s activity was constrained by the resources, research focus and
imagination of the scientists and engineers that created it.

The emergence of widely-available common robot architectures promises to mit-
igate the “silo effect” that has heretofore lessened the impact and wider application
of research contributions within robotics. Furthermore, developments in robot mid-
dleware have begun to create the software engineering infrastructure vital to foster-
ing interoperability and code reuse, a necessary prerequisite to the use of robots on
a large scale.

However, the current state of robot middleware is such that users and develop-
ers must make a heavy ontological commitment to a particular environment and
philosophy in order to use it to its full effect. Furthermore, middleware designers
have (perhaps by necessity) assumed that users of their systems would be roboti-
cists themselves, well-versed in the low-level systems programming and complex
control and decision algorithms which have always been a part of robotics research.
We developed rosbridge to expose these systems to the much wider world of general
applications developers, with the hope of unleashing for the first time a “web-scale”
revolution in robot availability and accessibility.

2 BACKGROUND

Several robot middleware system have been proposed to enable code sharing among
roboticists. These middleware systems include Player/Stage [8], the Carnegie Mel-
lon Navigation Toolkit (CARMEN) [24], Microsoft Robotics Studio [13], YARP
[17], Lightweight Communications and Marshalling (LCM) [12], and ROS [20], as
well as other systems [14]. These middleware systems provide common interfaces
that allow code sharing and reuse. While middleware systems differ in their design
and features, they typically provide a communication mechanism, an API for pre-
ferred languages, and a mechanism for sharing code through libraries or drivers.
Middleware systems typically require developers to code within the middleware
framework, and often within a specified build environment.

At their heart, many of these middleware packages provide a messaging and mar-
shalling protocol between processes running on multiple machines connected in
some fashion to robotic hardware. The framework permits, say, a stereo camera to
deliver images to a stereo image processor, which in turn can send a depth map to an
object recognition routine, which then routes coordinates to an inverse-kinematics
driver, which sends motor commands to processes delivering voltages to individual
servos. In a complex robot architecture, the number of independent processes and
the information that interconnects them quickly becomes massive. Even so, deep
down, the system is merely serializing and routing messages, and rosbridge takes
advantage of this fact. By way of analogy, web applications have developed huge
and complex backends that span continents and perform breathtaking feats of traffic
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analysis, shaping, routing, data acquisition and conglomeration, but still communi-
cate with browsers and each other over the HTTP protocol. Likewise, robots and
their controlling middleware can grow arbitrarily complex on the back end, but with
rosbridge they can communicate with an application layer over a single socket and
a plain-text protocol.

3 ROS

Rosbridge is designed to work initially within the paradigm established by the ROS
middleware system currently maintained by Willow Garage. ROS uses a peer-to-
peer networking topology; systems running ROS often consist of a number of pro-
cesses called nodes, possibly on different machines, that perform the system’s com-
putation. Nodes communicate with each other by passing messages. Under ROS,
messages are data structures made up of typed fields. Messages may be made up of
standard primitive data types, as well as arrays of primitives. Messages can include
arbitrarily nested structures and arrays.

Nodes can use two types of communication to send messages within the ROS
framework. The first is synchronous and is called a service. Services are much like
function calls in traditional programming languages. Services are defined by a string
name and a pair of messages: a request and a response. The response returns an
object which may be arbitrarily complex, ranging from a simple boolean indicating
success or failure to a large point cloud data structure. Only one node can provide a
service of a specific name.

The second type of communication is asynchronous and is called a topic. Topics
are streams of objects that are published by a node. Other nodes, “listeners”, may
subscribe by registering a handler function that is called whenever a new topic object
becomes available. Unlike services, listener nodes are unable to use their subscrip-
tion to the topic to communicate to the publisher. Multiple nodes may concurrently
publish and/or subscribe to the same topic and a single node may publish and/or
subscribe to multiple topics.

Unlike many other robot middleware systems, ROS is more than a set of libraries
that provide only a communication mechanism and protocol. Instead, nodes are de-
veloped within a build system provided by ROS. The intent is that a system running
ROS should be comprised of many independent modules. The build system is built
on top of CMake [16], which performs modular builds of both nodes and the mes-
sages passed between them.

Furthermore, ROS has assimilated a number of tools, algorithms and systems
which can serve as a basis for complex robot control. Thus a full suite of ROS
packages provides vision processing algorithms [4], 3D point cloud interpretation
[21] and simultaneous localization and mapping (SLAM) [10], among many others.
This represents the largest effort to date to foster a robotics community that supports
code-sharing and building on the prior work of others. This alone serves as reason
for applying the rosbridge architecture to ROS initially.
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Fig. 1: Recreating traditional abstraction layers in robotics with rosbridge. As de-
picted at left, software development depends on well-established layers of abstrac-
tion. Developers and engineers working at each layer possess very different skill
sets, but the enterprise succeeds due to well-defined abstractions and interfaces. At
present, roboticists must deal with all of these layers at once, limited by both their
own skills and by the unwieldiness inherent in poorly-abstracted systems (center).
At right, rosbridge attempts to establish a more clear abstraction boundary to ad-
dress this problem.

4 ROSBRIDGE

Rosbridge provides an additional level of abstraction on top of ROS, as depicted
in Figure 1. Rosbridge treats all of ROS as a “back end”. This shields application
developers from needing intimate knowledge of low-level control interfaces, mid-
dleware build systems and sophisticated robotic sensing and control algorithms. At
a bare minimum they must understand the build and transportation mechanisms of
the middleware package. Rosbridge layers a simple socket serialization protocol
over all of this complexity, on top of which application developers of all levels of
experience can create applications.

ROS abstracts individual robot capabilities, allowing robots to be controlled
through messages. It also provides facilities for starting and stopping the individual
ROS nodes providing these capabilities. Rosbridge encapsulates these two aspects
of ROS, presenting to the user a unified view of a robot and its environment. The
Rosbridge protocol allows access to underlying ROS messages and services as seri-
alized JSON objects, and in addition provides control over ROS node execution and
environment parameters (Figure 2).

Rosbridge allows simple message handling over both HTML5 websockets and
standard POSIX IP sockets. For example, a simple Python client which handles
data being published on a ROS topic called “/sensorPacket” can be written, simply,
as
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Fig. 2: Rosbridge serializes all applicable ROS topics and services over a single
socket interface.

host_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host_sock.connect((host_address, host_port))
host_sock.send(’raw\r\n\r\n’)
host_sock.send(’\x00{"receiver":"/rosbridge/subscribe","msg":["/sensorPacket",0,]}\xff’)
while True:

incoming = source_socket.recv(1024)
#handle sensorPacket data

This paradigm can be exploited in any language that supports IP sockets, which
is to say, all of them. Thus rosbridge enables robot application development in a
user’s language of choice.

5 ROSJS

Computing paradigms have developed over the years, from batch systems to time-
shared mainframes to standalone desktops to client-server architectures to ubiqui-
tous web-based applications. Current technology allows transparent administration,
redundant storage, and instantaneous deployment of software running on wildly het-
erogenous platforms, from smartphones to multicore desktops. This relatively new
and extremely ecosystem has spawned a population of users who understand ba-
sic web technologies such as HTML and Javascript [1]. Familiarity with basic web
technologies extends beyond expert application developers to users who would not
necessarily call themselves programmers, but who nevertheless use the web for all
manner of creation and communication and are familiar with the basic technologies.
One of the goals of rosbridge is to broaden robotics to this vast untapped popula-
tion of writers, artists, students, and designers. Javascript has become the default
language of the web and as such is one of the most popular languages in the world.
We hope to leverage a small part of that popularity to open robotics to an entirely
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new audience and to make working with robotics easier for those who are already
familiar.

Because this is one of rosbridge’s primary goals, we have provided a large and
full-featured rosbridge library in Javascript, known as rosjs. rosjs is designed to
integrate ROS with the web as unobtrusively and universally as possible. Its only
advanced dependency is on the HTML5 [19] technology of websockets. Currently
browsers such as Safari, Opera, and Chrome fully support them, as does the nightly
build of Firefox. Universality has been one of the key factors in the success of the
web, and accordingly rosjs is implemented as a simple Javascript library, completely
agnostic with respect to preferred development frameworks. Rosbridge is built using
serialized JSON objects, which are themselves basic Javascript object syntax.

rosjs is now a large library supporting many complex features for visualization
and interaction with sophisticated ROS-based manipulation and navigation algo-
rithms. However, it can be used for extremely simple code. The following demon-
strates how little Javascript code is required to send navigation commands to a robot.

<html><head>
<script>type="text/javascript" src="ros.js"</script>
...
var ros = new connection("ws://10.100.0.100:9090")
...
ros.publish(’/cmd_vel’,’geometry_msgs/Twist’,

’{"linear:{"x":’+x+’,"y":0,"z":0},"angular:{"x":0,"y":0,"z":’+z+’}}’);
...

JSON is simple enough that the serialization can be done by hand, as in the above
example. However, many JSON libraries exist to make the construction easier and
less error-prone.

rosjs was designed to meet the needs of developers with web programming ex-
perience. There are multiple advantages to the ability to develop robot applications
in the browser. Web browsers are familiar and widely-used interfaces, even by non-
techical users. Allowing users to access robots through the internet may provide
insights into new applications for robotics, as well be used as a tool to recruit po-
tential scientists to the field. Javascript allows for rapid and flexible user interface
and visualization development. Applications developed within a web browser are
also portable across platforms, and updates and new functionality can be easily pro-
vided.

6 ROSBRIDGE IN REMOTE LABORATORIES

While middleware systems allow for code sharing and reuse, many researchers are
limited by the overhead (and sometimes pure impossibility) of reproducing results
on similar platforms. Large platforms like mobile manipulators are expensive and
difficult to obtain for researchers at smaller institutions or companies. It is rare for
researchers to have access to common platforms, let alone shared data, especially
in fields focused on active learning or those requiring user studies. Additionally,
the great difficulty in reproducing experimental results has hindered the robotics
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field for many years. It is often difficult to assess which proposed approaches per-
form best. In fields where online learning and user demonstrations are required,
researchers do not perform research on common platforms, let alone on shared data.
A remote lab where users can compare results and share experimental data will help
provide a more scientific basis for comparison.

A remote robotic laboratory would allow researchers to run experiments and
compare against results produced on a common platform. We developed rosbridge
and its supporting rosjs libraries in part to support the development of experimental
infrastructure for the creation of remote robotic laboratories.

Fig. 3: A complex remote lab interface using rosjs and WebGL

Figure 3 depicts a remote lab inteface developed with rosjs to support research
into learning from demonstration. Users can access a PR2 robot to demonstrate pick-
and-place tasks, specifically setting a table. In addition, they can observe the robot’s
actions through a variety of sensors and camera streams, all provided through the
rosbridge framework. During each session data is logged and stored in a publicly
available repository. Custom controllers and learning algorithms, provided in public
code repositories, can use the data and provide policies for desired tasks on the
robot.

There are many technical challenges to address when creating such a remote
lab. The functionality provided by rosjs is instrumental to overcoming them. A web
interface is required so that users can work with the robot remotely. The user must
have some way of controlling the robot, either with code or through teleoperation.
Users must also be able to visualize the result of the control. Security measures are
required for the safety of the robot.
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7 ROSBRIDGE IN HUMAN-ROBOT INTERACTION

One of the strengths of rosbridge (and its Javascript application-layer library rosjs)
is its support for quickly and easily creating remote user interfaces. Much of the
teleoperation work in robotics has traditionally been aimed at tasks where robots
operate in environments that are hazardous to human users, such as robotic surgery
[18], search and rescue [6], and outer space [2]. In these applications, users are typ-
ically experts who have devoted a significant amount of training time to the difficult
task of controlling the robot and interacting with its interfaces. Our goal with ros-
bridge is to allow application developers to create interfaces that are intuitive even
for novice users.

Furthermore, even expert user interface designers are not necessarily experts in
ROS or robotics generally. The expertise needed for developing rewarding and in-
tuitive interactions over a simple Javascript web interface, however, is widespread
and generally available.

Rosbridge has the potential to increase the number of people using, interacting
with and programming robots. A recent trend in machine learning has examined the
use of truly large data sets for learning rather than attempting to generalize from a
small amount of data. Researchers in data mining and machine translation have able
to take advantage of Google’s index of billions of crowdsourced documents and
trillions of words to show that simple learning algorithms that focus upon recog-
nizing specific features outperform more conceptually sophisticated ones [11]. We
conjecture that similar successes would be observed if large amounts of data could
be collected for learning with robots. Human-robot interaction studies, to date, more
often number in the dozens of subjects [3]. Opening up robots to the vast number
of users on the world wide web provides the opportunity to gain a large number
demonstrations from many different users.

The robotics community has made a few forays into human robot interaction
over the internet. Goldberg et al. placed a robot in a garden and allowed users to
view and interact with the robot over the web. Users were able to plant seeds, water,
and monitor the garden [9]. Taylor and Trevelyan created a remote lab in which
users perform tasks involving brightly colored blocks [23]. Schulz et al. examined
the use of web interfaces to remotely operate mobile robots in public places [22].
This worked focused on letting remote users interact with humans within the robots’
environment and did not examine the effect of the visualizations in a learning task.
Burgard and Schulz have explored handling delay in remote operation/teleoperation
of mobile robots using predictive simulation for visualization [5].

In previous work, we have used rosbridge to leverage precisely this large network
effect [7]. HRI research into the character of interfaces and visualizations which lead
to successful human teaching of robot behavior was able to draw on a large pool of
participants and develop 276 use cases and eighty thousand points of data.
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8 ROSBRIDGE IN EDUCATION

Fig. 4: Robotic control using the Scratch educational programming environment

The simplicity and system independence of rosbridge make it a very powerful
tool for programming and robotics education. The ease of hooking into a robot sys-
tem using simple sockets and text-based JSON messages means that students have
a very gentle learning curve. In addition, programming languages and environments
that have been expressly designed for educational purposes can easily be extended
to communicate with rosbridge.

Figure 4 shows robotics development in the Scratch environment [15], a visual
programming system designed for children to learn and understand programming
concepts. A very simple extension to Scratch allows students interact with robots
programmatically. The system has been used by middle-school students, who were
able to program robots to perform basic closed loop behaviors such as line following
and bump exploration, without ever being aware of the underlying complexities of
ROS itself.

We are currently developing higher-level courses to take advantage of rosbridge,
as well. At the college level, robotics classes have traditionally spent a great deal
of time just “hacking on the machine”, dealing with and learning about the massive
infrastructure necessary to get robots to do useful things. Rosbridge short-circuits
this process, allowing students to spend more time learning about higher-level con-
trol and perception and less time wondering how to extract images from a camera
stream or compile behaviors in an abstruse and poorly-documented programming
environment.



10 Christopher Crick et al.

9 ROSBRIDGE WITHOUT ROS

In addition to extending ROS, rosbridge can be extended to provide similar func-
tionality for other middleware systems. The messaging protocol at the core of most
robot middleware can be translated into JSON objects just as ROS messages can,
and passed through the same sockets using the same interface. Our goal is to not
only extend ROS to but to also advocate that this additional level of abstraction may
be beneficial to other middleware systems.

We are currently developing rosbridge support for the LCM system [12]. This
will create a common interface for robots running ROS and LCM to send mes-
sages to each other, and for application developers to write software that can support
robots running either system.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we described rosbridge, a high-level middleware abstraction layer that
exposes robot functionality to developers as a simple interaction over a socket. In
addition, we have developed rosjs, a Javascript library on top of rosbridge, that sup-
ports extensive interaction and visualization of higher-level ROS constructs. We be-
lieve that web-based interaction with robots provides the largest potential pool of
new users and developers, and so expanding and enhancing rosjs has consumed
the largest share of our development resources. However, the rosjs framework also
serves as a model for the development of other libraries for other languages. In-
teraction with rosbridge can be as simple as desired – no more than sending text
strings over sockets – but of course advanced functionality should be developed to
support whatever tasks a user wishes. Rosbridge enables that development in purely
agnostic fashion.

We plan to develop rosbridge as much as possible into a simple nexus for robotics
technology to meet general application development. Already we have begun work
on an LCM component for rosbridge, with the hope of supporting general applica-
tion development for robots using either form of middleware. In addition, we hope
to support device manufacturers who need a simple, low-overhead means of inter-
facing with other computer systems. An embedded robot system might not be able
to accommodate the computational demands of a ROS system onboard, but if it can
send and receive plain-text messages over a POSIX socket, it can easily interface
with ROS over rosbridge. This would greatly expand the technological resources
available to the robot.

Rosbridge enables ROS to communicate with the web, applications developers to
communicate with robots, and robotics researchers to communicate with each other.
All of these are necessary for robots to succeed in the world.
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